首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   31篇
电工技术   5篇
化学工业   205篇
金属工艺   18篇
机械仪表   22篇
建筑科学   37篇
能源动力   74篇
轻工业   168篇
水利工程   1篇
石油天然气   4篇
无线电   25篇
一般工业技术   86篇
冶金工业   19篇
原子能技术   11篇
自动化技术   116篇
  2024年   2篇
  2023年   15篇
  2022年   14篇
  2021年   38篇
  2020年   25篇
  2019年   25篇
  2018年   47篇
  2017年   37篇
  2016年   37篇
  2015年   19篇
  2014年   44篇
  2013年   110篇
  2012年   56篇
  2011年   60篇
  2010年   59篇
  2009年   52篇
  2008年   41篇
  2007年   30篇
  2006年   20篇
  2005年   12篇
  2004年   15篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有791条查询结果,搜索用时 22 毫秒
21.
A series of composites of polyindole (PIN) and poly(dimethylsiloxane) (PDMS) were synthesized chemically using FeCl3 as an oxidant agent in anhydrous media. The composites were characterized by FTIR and UV‐visible spectroscopies, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X‐ray diffraction (XRD), elemental analysis, inductively coupled plasma‐optic emission spectroscopy (ICP‐OES), magnetic susceptibility, stress–strain experiments, and conductivity measurements. The conductivities of PIN at different temperatures were also measured and it was revealed that their conductivities were slightly increased with increasing temperature. Moreover, the freestanding films of PDMS/PIN composites were prepared by casting on glass Petri dishes to examine their stress–strain properties. From thermogravimetric analysis results it was found that PDMS/PIN composites were thermally more stable than PIN. Thermal stabilities of PDMS/PIN composites increased with increasing PIN content. It was found that the conductivities of PDMS/PIN composites depend on the indole content in the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
22.
In this study, the oxidative polycondensation reaction conditions of 4‐[(4‐methylphenyl)iminomethyl]phenol (4‐MPIMP) were studied by using oxidants such as air O2, H2O2, and NaOCl in an aqueous alkaline medium between 50 and 90°C. The structures of the synthesized monomer and polymer were confirmed by FTIR, UV–vis, 1H–13C‐NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC), and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(4‐methylphenyl)iminomethyl]phenol (P‐4‐MPIMP) was found to be 28% for air O2 oxidant, 42% for H2O2 oxidant, and 62% for NaOCl oxidant. According to the SEC analysis, the number–average molecular weight (Mn), weight–average molecular weight (Mw), and polydispersity index values of P‐4‐MPIMP were found to be 4400 g mol?1, 5100 g mol?1, and 1.159, using H2O2, and 4650 g mol?1, 5200 g mol?1, and 1.118, using air O2, and 5100 g mol?1, 5900 g mol?1, and 1.157, using NaOCl, respectively. According to TG analysis, the weight losses of 4‐MPIMP and P‐4‐MPIMP were found to be 85.37% and 72.19% at 1000°C, respectively. P‐4‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐4‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels and electrochemical energy gaps (E) of 4‐MPIMP and P‐4‐MPIMP were found to be ?5.76, ?5.19; ?3.00, ?3.24; 2.76 and 1.95 eV, respectively. According to UV–vis measurements, optical band gaps (Eg) of 4‐MPIMP and P‐4‐MPIMP were found to be 3.34 and 2.82 eV, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
23.
24.
The aim of this study was to synthesis, characterization and investigation of the influence of the polyoxometalate concentrations (1, 3, 5 and 10 wt%) on chemical, thermal, physical and morphological properties of nickel-based polyoxometalate/polyurethane composite (Ni-POM/PU) materials. Firstly, nickel-based polyoxometalate (Ni-POM) compound has been synthesized and characterized through various spectroscopic techniques. Synthesized Ni-POM compounds have been used for preparation of polyurethane composites as a reinforcement. Three different Ni-POM/PU composites containing Ni-POM were prepared by solution mixing and casting techniques. The chemical structure and morphology of prepared Ni-POM/PU composite samples were confirmed by Fourier transform infrared spectroscopy (FTIR), elemental analysis and SEM techniques. Effects of Ni-POM on thermal stability, glass transition temperature, optical transparency, hydrophilicity and physical properties of polyurethane composites were examined. Thermal stabilities and glass temperatures of the materials have been checked by differential thermal analysis (DTA), thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). The SEM results confirmed the highly porous structure and the formation of Ni-POM structures in the polymer matrix. Synthesized composites showed high chemical stability, good processability, and low Tg values. The dielectric properties of the prepared Ni-POM/polyurethane composites were also investigated at room temperature. These results displayed that the dielectric constant of the POM/polyurethane composites decreased with the increase of the Ni-POM content in polymeric matrix.  相似文献   
25.
The scope of this study consists in studying the effects of processing type on thermal stability of poly(ethylene terephthalate) (PET) and its nanocomposites prepared with organically modified clays. To achieve this goal, an intercalating agent was synthesized and montmorillonite type of clay modified with this intercalating agent was mixed with the PET by using melt extrusion and high‐shear thermokinetic mixing method. According to the results, manganese in the raw clay—though chemically bound—was found to be responsible for the decreased intrinsic viscosity (IV) values, i.e. decreased molecular weight in PET/organoclay nanocomposites. Besides, it was revealed that working on the thermokinetic mixer provided substantial contributions such as shorter processing times in comparison to the melt extrusion method, elimination of drying step before melt processing, which has been accepted as an inevitable process for PET so far, less thermal degradation because of short processing times, and more homogeneous and better dispersion of the clay particles in PET matrix phase. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   
26.
In this study, nano sized zinc borate powder with a formula of 4ZnO·B2O3·H2O was synthesized using 2ZnO·3B2O3·3.0–3.5H2O as a starting chemical which was produced using a wet chemical method. After dissolving 2ZnO·3B2O3·3.0–3.5H2O in an ammonia solution, the clear solution was boiled until a white powder formed. The resultant powder was characterized with XRD, FTIR, TGA and TEM. XRD, FTIR and TGA results proved that the powder was belonged to the 4ZnO·B2O3·H2O. Nano composites of 4ZnO·B2O3·H2O–polyvinylchloride (PVC) were produced by injection moulding by adding 1 and 5 wt% zinc borate powders into PVC to enhance its flame retardancy. Limiting oxygen index (LOI) of virgin PVC increased from 41% to 47% and 54% for the 1 and 5 wt% zinc borate added PVC, respectively. Nano zinc borate addition into the PVC does not have considerable negative effect on the mechanical properties of zinc borate–PVC composites even at high amounts of 5 wt%.  相似文献   
27.
In this study, we proposed to investigate how the effect of electron-donating methyl ( CH3) group at p-position of amin ( NH2) group in aminophenol (AP) compound affected thermal stability, optical, electrochemical properties, and conductivity measurement. For this reason, we choice 2-AP and 2-amino-4-methylphenol compounds and synthesized phenolic monomers by condensation reactions 4-fluorobenzaldehyde with aromatic amino phenols. Then, these monomers were converted to their polyphenol derivatives by oxidative polycondensation reactions in an aqueous alkaline medium. Structural characterizations were carried out by FTIR, NMR, and size exclusion chromatography. Cyclic voltammetry was used to determine the electrochemical oxidation-reduction characteristics. Optical properties were investigated by UV–vis and fluorescence analyses. Solid state electrical conductivities were measured on polymer films by four-point probe technique using an electrometer. Thermal data of monomer/polymer and polymers were obtained by TG-DTA and DSC techniques, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
28.
Polyvinyl alcohol (PVA)/(Co-Ni) nanofiber film was fabricated on silicon wafer using electrospinning technique. The topography of the produced PVA/(Co-Ni) nanofiber film was examined by scanning electron microscopy (SEM). The Au/Poly (vinyl alcohol) (Co, Ni-doped)/n-Si Schottky diode (SD) was thermally formed in evaporating system after the spinning process. At first, the current–voltage (IV) characteristics of Au/PVA (Co, Zn-doped)/n-Si SD was measured at the room temperature (300 K). For the investigating the effect of temperature, illumination and radiation on Au/PVA (Co, Zn-doped)/n-Si SD comparatively, the measurement was performed under the illumination intensity of 200 W, at 380K, and finally the radiation dose of 22 kGy respectively. The diode characteristics such as the zero-bias barrier height (ϕBo), ideality factor (n) and series resistance (Rs) were calculated at room temperature and under the condition of high temperature, illumination, and radiation. It was found that these characteristics were affected by the illumination and radiation as well as the temperature. The density of interface states (Nss) distribution profiles as a function of (Ec - Ess) extracted from the forward IV measurements were also affected by illumination and radiation even if just a bit. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
29.
A new series of poly(azomethine-imide)s having siloxane moities in backbone was prepared using different dianhydrides.Thermal, optical, and morphological properties of these polymers were clarified. Also, bulky  CO and  CF3 group effects and meta or para-substituted aldeyhde effects on the mentioned properties were evaluated. The structural characterization of poly(azomethine-imide)s was carried out using a FT-IR spectroscopy. The optical properties of the polymers were performed via an UV–Vis spectrophotometer. Optical band gap of the poly(imide)s containing azomethine was calculated between 2.20 and 2.33 eV. Thermal behavior of poly(azomethine-imide)s was also studied using TG-DTA, DSC, and DMA techniques. The onset degradation temperature and percentage char values of the polyimides were found in the range from 429 to 545 °C and 22 to 35%, respectively. Thermal stability results demonstrated that benzophenone bearing poly(azomethine-imide)s have higher onset temperature, percentage char, and the glass transition temperature than poly(azomethine-imide)s derived from hexafluoroisopropylidene. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48364.  相似文献   
30.
In this study, safflower oil oleogels were made using propolis wax and carnauba wax in three different concentrations each, and their effectiveness as a fat substitute in cake was evaluated afterward. Oleogels' oxidative stability and characterization were looked into. In oleogels, the oil binding capacity, solid fat content, and crystallization time were all assessed. The cakes underwent an examination for moisture content, texture, and sensory evaluation. Additionally, analyses of fatty acid composition, free fatty acidity, oxidative stability (peroxide value, conjugated diene-triene), 3-monochloropropane-1,2-diol (3-MCPD), and glycidyl were carried out both before and after baking in oleogels and shortening. Several of the physical, textural, and sensory qualities of the oleogel-based cakes were acceptable when compared to those of the shortening-based cakes. The general acceptability of cakes made with carnauba wax was very high and almost under control. The acceptability of cakes made with propolis wax oleogels was lower than this. The study of these criteria has shown that safflower oil-based carnauba and propolis wax oleogels can be utilized to produce high-quality, healthful cakes with a high amount of unsaturated fatty acids. Practical Applications : To replace fat phases in cake products high in saturated fatty acids and to enhance the fatty acid profile of the cakes, safflower oil-based oleogels with propolis wax and carnauba wax are a very good option. The results obtained provide useful information for the production of high-quality cakes with higher unsaturated fatty acid content, recommended for a healthier diet, with these oleogels containing different concentrations of oleogelator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号