排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
12.
采用密度泛函理论(DFT)中的B3LYP/6-31G(d, p)和MP2/6-31G(d, p)算法计算了C3HF7热解反应的焓变、中间态分子模型及活化能. 结果表明,反应温度对C3HF7分解有明显影响,800℃的热分解产物主要为C3F6,伴随一定量C3HF5, CHF3和(CF3)2C=CF2及痕量产物C2F4, C3F8, C2HF5与C4F8. 热解主要产物C3F6主要来自C3HF7发生H转移反应,伴随H转移反应生成CF3C:CF3与CF3CF:卡宾,F转移反应生成CF2:卡宾和CF3CH:自由基,相互反应生成第二、第三和第四产物C3HF5, CHF3和(CF3)2C=CF2; C?F和C?C键断裂生成的自由基与卡宾结合,生成痕量产物C2F4, C3F8, C2HF5和C4F8. 相似文献
13.
三氟甲烷(CHF3)、五氟乙烷(C2HF5)、六氟丙烷(C3H2F6)和七氟丙烷(C3HF7)四种典型的氢氟烃(HFCs)是目前常用的哈龙替代型灭火剂,具有灭火高效、性能可靠且无残留的特性. 4种典型含氟灭火剂在灭火过程中会产生有毒气体HF,热分解过程中产生的含氟自由基与火焰中的O, H, OH等燃烧自由基反应,导致燃烧过程中化学链式反应中断.缩短达到灭火浓度所用时间、减少灭火剂与火焰作用时间和加入抑制剂或添加剂可降低有毒气体HF生成量. 未来应进一步借助全尺度实验和理论计算,深入研究HFCs类灭火剂在不同使用条件下的灭火机理,获取HFCs灭火剂灭火浓度、灭火毒性、腐蚀性及相容性等实际数据,为提高其灭火性能、降低灭火过程中有毒气体的生成、拓宽使用领域和开发性能更优异的HFCs类灭火剂奠定一定的理论和应用基础. 相似文献
14.
采用纳米化策略进一步提高锂离子电池负极材料(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物(HEO)的倍率性能。本研究以金属硝酸盐为金属源、尿素为沉淀剂、十二烷基三甲基溴化铵(DTAB)为表面活性剂,利用水热法成功制备了具有单一尖晶石结构的(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 HEO纳米材料。研究表明:与未添加表面活性剂相比,水热过程中引入表面活性剂,所制备的(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物纳米晶粉体,具有更小的颗粒尺寸、更均匀的分散度、更大的比表面积和均一的孔结构。这种独特的结构特征使该电极材料具有较大的赝电容贡献率,从而使材料的可逆比容量和倍率性能得到大幅度提升。引入表面活性剂的电极材料在0.2 A/g的电流密度下展示了较高的初始放电比容量(1308 mA·h/g)和首圈库伦效率(82.5%),循环25圈时可逆容量为1263 mA·h/g;在3 A/g的高电流密度下,循环150圈后的比容量高达1053 mA·h/g,为未引入表面活性剂的电极材料比容量的8倍多。 相似文献
15.
测量了不同类型Ni-P化学镀试样和基体的孔隙率,以及在HCl、NaCl和NaOH溶液中的腐蚀速率,比较了不同类型Ni-P化学镀试样在3.5%NaCl溶液中的极化曲线,对比分析了酸性和酸碱复合条件下所得Ni-P镀层的表面形貌。结果表明:化学镀Ni-P合金能显著改善NdFeB永磁体的耐腐蚀性和致密性,且以弱碱性化学镀为底层,酸性化学镀为表层的酸碱复合镀层的致密性和耐腐蚀性最佳,单一酸性镀层的耐腐蚀性又优于碱性镀层。 相似文献
16.
17.
钙钛矿型ABO3氧化物由于良好的导电性和电化学活性,成为能源存储材料领域的研究热点之一。本研究采用固相反应法制备了钙钛矿型La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物锂离子电池(LIBs)负极材料,并将其与二元钙钛矿型LaCoO3进行了比较。结果表明,随着反应温度由750℃升高到950℃,反应时间由30 min增加到4 h,钙钛矿结构中的杂相逐渐消失,结晶度逐渐增加。所制备的粉体为球形,且各组成元素分布均匀。研究其电化学性能表明,La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3由于具有熵稳定的晶体结构和多主元协同效应,展示了更高的比容量、更优异的倍率性能和循环稳定性。La(Co0.2Cr0.2Fe<... 相似文献
18.
高熵合金是近几年发展起来的新型合金,由于其优异的性能,如高延展性、高强度、优异的耐磨性、优异的耐蚀性和优异的高温稳定性,已成为热点材料之一。高熵合金粉体作为制备块体、涂层、薄膜材料及其它功能材料的原料,有着广阔的应用前景,但目前对高熵合金粉体尤其是高熵合金纳米粉体的研究较少。本工作根据当前高熵合金的研究进展,对高熵合金相形成的判据进行了划分,主要包括混合熵判据、混合焓判据、Ω判据和Hume?Rothery固溶理论判据。通过对各判据的总结,阐述了高熵合金固溶体相的形成规律,综述了高熵合金超细粉体和纳米粉体的制备方法,主要包括机械合金化法、气/水雾化法、化学还原法、碳热震荡法、等离子电弧放电法和扫描探针光刻技术,分析比较了不同方法的优缺点和应用前景,指出了高熵合金领域当前存在的问题和相应的解决方法,并对未来的发展作了展望。 相似文献
20.