排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
12.
模糊机会约束规划是一类重要的模糊规划,它广泛地存在于许多领域中,微粒群算法已实现了对其的有效求解,但求解速度仍不能满足大规模模糊机会约束规划问题的求解,为了寻找更为高效的求解模糊机会约束规划的算法,通过采用模糊模拟产生样本训练BP网络以逼近模糊函数,然后应用微粒群算法并以逼近模糊函数的神经网络作为适应值估计及检验解的可行性,从而提出了一种求解模糊机会约束规划的混合智能算法。最后通过仿真结果说明了算法的正确性和有效性。 相似文献
13.
针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,GRU-NN)并行,分别提取局部特征与时序特征,将2个网络结构的输出拼接并输入深度神经网络(deep neural network,DNN),由DNN进行超短期负荷预测。最后应用负荷与温度数据进行预测实验,结果表明相比于GRUNN网络结构、长短期记忆(long short term memory,LSTM)网络结构、串行CNN-LSTM网络结构与串行CNN-GRU网络结构,所提方法具有更好的预测性能。 相似文献