首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4679篇
  免费   274篇
  国内免费   21篇
电工技术   102篇
综合类   9篇
化学工业   1210篇
金属工艺   153篇
机械仪表   169篇
建筑科学   137篇
矿业工程   3篇
能源动力   367篇
轻工业   529篇
水利工程   59篇
石油天然气   47篇
武器工业   1篇
无线电   479篇
一般工业技术   907篇
冶金工业   258篇
原子能技术   31篇
自动化技术   513篇
  2024年   13篇
  2023年   87篇
  2022年   155篇
  2021年   288篇
  2020年   192篇
  2019年   215篇
  2018年   231篇
  2017年   215篇
  2016年   225篇
  2015年   163篇
  2014年   229篇
  2013年   463篇
  2012年   304篇
  2011年   354篇
  2010年   235篇
  2009年   191篇
  2008年   153篇
  2007年   132篇
  2006年   115篇
  2005年   76篇
  2004年   64篇
  2003年   82篇
  2002年   64篇
  2001年   61篇
  2000年   68篇
  1999年   39篇
  1998年   76篇
  1997年   53篇
  1996年   48篇
  1995年   43篇
  1994年   29篇
  1993年   34篇
  1992年   10篇
  1991年   20篇
  1990年   19篇
  1989年   15篇
  1988年   30篇
  1987年   25篇
  1986年   23篇
  1985年   18篇
  1984年   18篇
  1983年   12篇
  1982年   11篇
  1981年   10篇
  1979年   9篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1975年   7篇
  1974年   7篇
排序方式: 共有4974条查询结果,搜索用时 15 毫秒
91.
Liu Y  Rahman BM  Grattan KT 《Applied optics》1994,33(24):5611-5616
Birefringence induced by thermal stress in bow-tie optical fibers is studied in detail by the use of the finite-element method. Results of computer modeling show that a higher degree of birefringence can be obtained with the use of a larger cladding and larger stress-applying zones in the fiber.  相似文献   
92.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
93.
Base station's location privacy in a wireless sensor network (WSN) is critical for information security and operational availability of the network. A key part of securing the base station from potential compromise is to secure the information about its physical location. This paper proposes a technique called base station location privacy via software-defined networking (SDN) in wireless sensor networks (BSLPSDN). The inspiration comes from the architecture of SDN, where the control plane is separated from the data plane, and where control plane decides the policy for the data plane. BSLPSDN uses three categories of nodes, namely, a main controller to instruct the overall operations, a dedicated node to buffer and forward data, and lastly, a common node to sense and forward the packet. We employ three kinds of nodes to collaborate and achieve stealth for the base station and thus protecting it against the traffic-analysis attacks. Different traits of the WSN including energy status and traffic density can actively be monitored by BSLPSDN, which positively affects the energy goals, expected life of the network, load on common nodes, and the possibility of creating diversion in the wake of an attack on the base station. We incorporated multiple experiments to analyze and evaluate the performance of our proposed algorithm. We use single controller with multiple sensor nodes and multiple controllers with multiple sensor nodes to show the level of anonymity of BS. Experiments show that providing BS anonymity via multiple controllers is the best method both in terms of energy and privacy.  相似文献   
94.
Learning Management System (LMS) is an application software that is used in automation, delivery, administration, tracking, and reporting of courses and programs in educational sector. The LMS which exploits machine learning (ML) has the ability of accessing user data and exploit it for improving the learning experience. The recently developed artificial intelligence (AI) and ML models helps to accomplish effective performance monitoring for LMS. Among the different processes involved in ML based LMS, feature selection and classification processes find beneficial. In this motivation, this study introduces Glowworm-based Feature Selection with Machine Learning Enabled Performance Monitoring (GSO-MFWELM) technique for LMS. The key objective of the proposed GSO-MFWELM technique is to effectually monitor the performance in LMS. The proposed GSO-MFWELM technique involves GSO-based feature selection technique to select the optimal features. Besides, Weighted Extreme Learning Machine (WELM) model is applied for classification process whereas the parameters involved in WELM model are optimally fine-tuned with the help of Mayfly Optimization (MFO) algorithm. The design of GSO and MFO techniques result in reduced computation complexity and improved classification performance. The presented GSO-MFWELM technique was validated for its performance against benchmark dataset and the results were inspected under several aspects. The simulation results established the supremacy of GSO-MFWELM technique over recent approaches with the maximum classification accuracy of 0.9589.  相似文献   
95.
In this paper, in order to improve the received signal strength (RSS) and signal quality, three arrays of electronically steerable parasitic array radiator (ESPAR) antennas are suggested for the ultra-high frequency (UHF) radio frequency identification (RFID) communication and sensing system applications. Instead of the single antenna, the array antennas have recently been widely used in many communication systems because of their peak gains, better radiation patterns, and higher radiation efficiency. Also, there are some important issues to use the antenna array like high data rates in wireless communication systems and to better understand the many targets or sensors. In this article, a wireless sensor network (WSN) is being investigated to overcome multipath fading and interference by antenna nulling technology that can be achieved through beam control ESPAR array antennas. The proposed ESPAR array antennas exhibit higher gains like 9.63, 10.2, and 12 dBi and proper radiation patterns from one array to another. Moreover, we investigate the mutual coupling effect on the performance of array antennas with different spacing (0.5λ, 0.75λ, λ) and configurations. It is found that the worst mutual coupling reduced by −28 to −34 dB for 2 × 2 array, −3 to −43 dB for 2 × 3 array, and finally −42 dB to −51 dB due to the antenna spacing from 0.5λ to λ. Thus, these suggested antennas could effectively be applied in the WSN communication systems, internet of things (IoT) networks, and massive wireless and backscatter communication systems.  相似文献   
96.
Engineering with Computers - This work addresses a hybrid scheme for the numerical solutions of time fractional Tricomi and Keldysh type equations. In proposed methodology, Haar wavelets are used...  相似文献   
97.
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals; these signals can be recorded, processed and classified into different hand movements, which can be used to control other IoT devices. Classification of hand movements will be one step closer to applying these algorithms in real-life situations using EEG headsets. This paper uses different feature extraction techniques and sophisticated machine learning algorithms to classify hand movements from EEG brain signals to control prosthetic hands for amputated persons. To achieve good classification accuracy, denoising and feature extraction of EEG signals is a significant step. We saw a considerable increase in all the machine learning models when the moving average filter was applied to the raw EEG data. Feature extraction techniques like a fast fourier transform (FFT) and continuous wave transform (CWT) were used in this study; three types of features were extracted, i.e., FFT Features, CWT Coefficients and CWT scalogram images. We trained and compared different machine learning (ML) models like logistic regression, random forest, k-nearest neighbors (KNN), light gradient boosting machine (GBM) and XG boost on FFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFT features gave the maximum accuracy of 88%.  相似文献   
98.
99.
Many quality characteristics have means and standard deviations that are not independent. Instead, the standard deviations of these quality characteristics are proportional to their corresponding means. Thus, monitoring the coefficient of variation (CV), for these quality characteristics, using a control chart has gained remarkable attention in recent years. This paper presents a side sensitive group runs chart for the CV (called the SSGR CV chart). The implementation and optimization procedures of the proposed chart are presented. Two optimization procedures are developed, i.e. (i) by minimizing the average run length (ARL) when the shift size is deterministic and (ii) by minimizing the expected average run length (EARL) when the shift size is unknown. An application of the SSGR CV chart using a real dataset is also demonstrated. Additionally, the SSGR CV chart is compared with the Shewhart CV, runs rules CV, synthetic CV and exponentially weighted moving average CV charts by means of ARLs and standard deviation of the run lengths. The performance comparison is also conducted using EARLs when the shift size is unknown. In general, the SSGR CV chart surpasses the other charts under comparison, for most upward and downward CV shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
100.
Electromagnetic wideband absorption is still perceived as a critical and formidable challenge to address with an unambiguous photonic absorber. Subwavelength metamaterial (MM) unit cells with unique and controlled features have recently gained considerable interest. However, meta-atoms, generated using a quantum-inspired pattern distribution, are underwhelming in existing literature to design photonic absorbers and their potential application to manufacture solar sails is still quite uncommon. In this article, to create a flexible, polarization-insensitive, ultrathin, and broadband MM absorber, quantum interference pattern-inspired design is utilized. Herein, a novel approach to fabricating solar sails for the space exploration incorporates the proposed broadband photonic absorber rather than conventional reflectors. The quantum-inspired meta-absorber (QIMA) exhibits an absorption of over 91% for the visible domain, i.e., 380–800 nm under a conventional plane-polarized source. It is shown in the study that broadband absorbers are almost equivalent to excellent reflectors to design the solar sails in terms of the time-averaged force calculated by utilizing the Maxwell stress tensor method. Thus, the QIMA has the potential to be a viable alternative to reflectors in the design of futuristic solar sails for space exploration. The interference theory model is also utilized to assure the dependability of calculated data, and additionally, the standard AM1.5 solar spectrum is utilized to demonstrate the QIMA's solar-harvesting potentiality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号