首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2673篇
  免费   178篇
  国内免费   22篇
电工技术   48篇
综合类   6篇
化学工业   700篇
金属工艺   37篇
机械仪表   90篇
建筑科学   74篇
矿业工程   2篇
能源动力   212篇
轻工业   247篇
水利工程   18篇
石油天然气   42篇
无线电   291篇
一般工业技术   526篇
冶金工业   126篇
原子能技术   20篇
自动化技术   434篇
  2024年   13篇
  2023年   92篇
  2022年   178篇
  2021年   196篇
  2020年   142篇
  2019年   149篇
  2018年   182篇
  2017年   132篇
  2016年   171篇
  2015年   108篇
  2014年   166篇
  2013年   228篇
  2012年   143篇
  2011年   133篇
  2010年   112篇
  2009年   98篇
  2008年   82篇
  2007年   59篇
  2006年   57篇
  2005年   37篇
  2004年   31篇
  2003年   34篇
  2002年   30篇
  2001年   24篇
  2000年   17篇
  1999年   22篇
  1998年   48篇
  1997年   15篇
  1996年   33篇
  1995年   18篇
  1994年   19篇
  1993年   19篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1988年   6篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   9篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1973年   1篇
  1959年   4篇
排序方式: 共有2873条查询结果,搜索用时 15 毫秒
131.
132.
Propylsulfonic acid-functionalized partially crystalline silicalite-1 materials were synthesized via one step co-condensation technique by varying the molar ratio of organosilane source, 3-mercaptopropyltrimethoxysilane (3MP) to tetraethylorthosilicate (TEOS) in the range of 0.05–0.30, and subsequent oxidation of thiol group to propylsulfonic acid using hydrogen peroxide (H2O2). These materials were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and nitrogen adsorption–desorption method. The structure of these materials was determined by Fourier transform infrared spectroscopy (FT-IR) and 29Si and 13C solid state NMR. XRD results show that % crystallinity of the materials decreased with the increase in 3MP concentration in the synthesis mixture. Selected area electron diffraction (SAED) showed the presence of crystalline and amorphous phases in the samples. An amorphous phase was formed when 3MP concentration was 30 mol% of the total silica source. After elimination of the structure directing agent (SDA) by calcination at 420 °C, thermogravimetric analysis (TGA) shows that the structure was thermally stable up to 550 °C. Ammonia temperature-programmed desorption (NH3-TPD) shows that the acid capacity of these materials was in the range of 1.19–1.83 mmol H+/g, which shows that these materials could be used as potential heterogeneous acid catalyst.  相似文献   
133.
134.
135.
In this paper, we address the problem of distributed interference management of femtocells that share the same frequency band with macrocells using distributed multi‐agent Q‐learning. We formulate and solve two problems representing two different Q‐learning algorithms, namely, femto‐based distributed and sub‐carrier‐based distributed power controls using Q‐learning (FBDPC‐Q and SBDPC‐Q). FBDPC‐Q is a multi‐agent algorithm that works on a global basis, for example, deals with the aggregate macrocell and femtocell capacities. Its complexity increases exponentially with the number of sub‐carriers in the system. Also, it does not take into consideration the sub‐carrier macrocell capacity as a constraint. To overcome these problems, SBDPC‐Q is proposed, which is a multi‐agent algorithm that works on a sub‐carrier basis, for example, sub‐carrier macrocell and femtocell capacities. Each of FBDPC‐Q and SBDPC‐Q works in three different learning paradigms: independent (IL), cooperative (CL), and weighted cooperative (WCL). IL is considered the simplest form for applying Q‐learning in multi‐agent scenarios, where all the femtocells learn independently. CL and WCL are the proposed schemes in which femtocells share partial information during the learning process in order to strike a balance between practical relevance and performance. We prove the convergence of the CL paradigm when used in the FBDPC‐Q algorithm. We show via simulations that the CL paradigm outperforms the IL paradigm in terms of the aggregate femtocell capacity, especially in networks with large number of femtocells and large number of power levels. In addition, we propose WCL to address the CL limitations. Finally, we evaluate the robustness and scalability of both FBDPC‐Q and SBDPC‐Q, against several typical dynamics of plausible wireless scenarios (fading, path loss, random activity of femtocells, etc.). We show that the CL paradigm is the most scalable to large number of femtocells and robust to the network dynamics compared with the IL and WCL paradigms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
136.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   
137.
In this study, nickel oxide was prepared through the calcination of extrusion dripped chitosan/nickel nitrate beads. The morphology and structural properties of the products were studied using various characterization techniques. Uniformly distributed nickel oxide was formed as observed from the studies of surface morphology where the processing parameters play a huge role on the resulting morphology. TEM results have shown that nickel oxide with crystallite sizes of 10–30 nm was obtained. The Fourier‐transform infrared spectra studies show an intense peak at 525 cm?1, which is attributed to the vibration of Ni–O bond. Furthermore, the XRD results show NiO diffraction peaks correspond to (111), (200), (220), (311), and (222) which indicates that a bunsenite structure with a face‐centered cubic phase was produced in this study. The usage of 500°C as the lower limit in this study is justified due to the complete removal of the templating material as seen in the thermalgravimetric analysis studies. Furthermore, it was obtained that the largest surface area of nickel oxide synthesized using this technique is 48.024 m2/g with pore sizes of 19.843 nm. The usage of chitosan as a green template for the synthesis of nanoparticles has shown promising results which allows a more economical and sustainable approach for the fabrication of nanomaterials.  相似文献   
138.
Interest in the development of polymeric hydrogels impregnated with carbon-nanotubes (CNTs) is growing rapidly in recent times owing to their usefulness in many fields of human endeavor. This review paper serves as an archive of literature reports of several researchers who have worked on polymeric hydrogels embedded with CNTs for diverse applications. The review covers up to date research advancement on the synthesis and characterization properties of CNTs nanocomposite hydrogels. Besides, this review discusses extensively the various fields in which polymeric hydrogels infused with CNTs have been applied. This unprecedented compilation of CNTs nanocomposite hydrogels information into a single revision allows a straightforward comparison of studies performed for diverse applications.  相似文献   
139.
140.
The effects of the surface charge type and density C496, C492 and A130LMW polyacrylamides (PAMs) on the rheological behavior of real industrial papermaking suspensions were quantitatively related to the degree of flocculation for the same industrial papermaking suspensions. The floc sizes were larger but less dense when anionic PAM was used, and this due to the repulsive forces between the anionic PAM and colloidal particles, leading to the development of open structure flocs of less density. On the other hand, rheological measurements showed that the papermaking suspension is thixotropic with a measurable yield stress. The results showed that the magnitude of the critical stress, τ c , complex viscosity, η*, elastic modulus, G′, and viscous modulus, G″, depend on the number of interactions between the PAM chains and particle surface and the strength of those interactions. Cationic PAM showed higher values of η*, G′, G″ and τ c compared to anionic PAM. This behavior is in good agreement with Bingham yield stress, τ B , adsorption and effective floc density results. Similar to oscillatory measurements, creep measurements also showed that the deformation was much lower for the cationic PAM based suspensions than for the anionic PAM based suspensions. Furthermore, the results revealed that increasing the cationic PAM surface charge decreases the floc size but increases the adsorption rate, elasticity and effective floc density proposing differences in the floc structures, which are not revealed clearly in the Bingham yield stress measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号