收费全文 | 613篇 |
免费 | 22篇 |
电工技术 | 11篇 |
化学工业 | 170篇 |
金属工艺 | 11篇 |
机械仪表 | 8篇 |
建筑科学 | 12篇 |
能源动力 | 22篇 |
轻工业 | 44篇 |
水利工程 | 3篇 |
无线电 | 60篇 |
一般工业技术 | 131篇 |
冶金工业 | 40篇 |
原子能技术 | 9篇 |
自动化技术 | 114篇 |
2024年 | 21篇 |
2023年 | 18篇 |
2022年 | 31篇 |
2021年 | 38篇 |
2020年 | 28篇 |
2019年 | 38篇 |
2018年 | 37篇 |
2017年 | 29篇 |
2016年 | 28篇 |
2015年 | 26篇 |
2014年 | 26篇 |
2013年 | 34篇 |
2012年 | 20篇 |
2011年 | 36篇 |
2010年 | 14篇 |
2009年 | 22篇 |
2008年 | 19篇 |
2007年 | 21篇 |
2006年 | 13篇 |
2005年 | 7篇 |
2004年 | 7篇 |
2003年 | 7篇 |
2002年 | 10篇 |
2001年 | 9篇 |
2000年 | 7篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 11篇 |
1996年 | 9篇 |
1995年 | 4篇 |
1994年 | 11篇 |
1993年 | 8篇 |
1992年 | 2篇 |
1990年 | 2篇 |
1987年 | 2篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1982年 | 4篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1972年 | 1篇 |
Image captured by low dynamic range (LDR) camera fails to capture entire exposure level of scene, and instead only covers certain range of exposures. In order to cover entire exposure level in single image, bracketed exposure LDR images are combined. The range of exposures in different images results in information loss in certain regions. These regions need to be addressed and based on this motive a novel methodology of layer based fusion is proposed to generate high dynamic range image. High and low-frequency layers are formed by dividing each image based on pixel intensity variations. The regions are identified based on information loss section created in differently exposed images. High-frequency layers are combined using region based fusion with Dense SIFT which is used as activity level testing measure. Low-frequency layers are combined using weighted sum. Finally combined high and low-frequency layers are merged together on pixel to pixel basis to synthesize fused image. Objective analysis is performed to compare the quality of proposed method with state-of-the-art. The measures indicate superiority of the proposed method.
相似文献This article explores that the study on bending of magneto-electric-elastic nanobeams relies on nonlocal elasticity theory. The Vlasov’s model foundation utilizes the silica aerogel foundation. The guiding expressions of nonlocal nanobeams in the considered framework are used extensively and where parabolic third-order beam theory is achieved after using Hamilton’s principle. Parametric work is introduced to scrutinize the influence of the magneto-electro-mechanical loadings, nonlocal parameter, and aspect ratio on the deflection characteristics of nanobeams. It is noticed that the boundary conditions, nonlocal parameter, and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.
相似文献