首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   12篇
电工技术   10篇
综合类   1篇
化学工业   76篇
金属工艺   6篇
机械仪表   7篇
建筑科学   12篇
能源动力   9篇
轻工业   17篇
无线电   73篇
一般工业技术   92篇
冶金工业   56篇
原子能技术   2篇
自动化技术   64篇
  2024年   3篇
  2023年   11篇
  2022年   15篇
  2021年   21篇
  2020年   15篇
  2019年   14篇
  2018年   18篇
  2017年   12篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   17篇
  2012年   7篇
  2011年   20篇
  2010年   10篇
  2009年   20篇
  2008年   12篇
  2007年   10篇
  2006年   13篇
  2005年   11篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   8篇
  2000年   6篇
  1999年   9篇
  1998年   13篇
  1997年   13篇
  1996年   12篇
  1995年   11篇
  1994年   6篇
  1993年   4篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   1篇
  1986年   1篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
  1979年   7篇
  1978年   2篇
  1976年   4篇
  1975年   1篇
  1973年   1篇
  1970年   3篇
  1968年   2篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
421.
The novel coronavirus disease (SARS‐CoV‐2 or COVID‐19) is spreading across the world and is affecting public health and the world economy. Artificial Intelligence (AI) can play a key role in enhancing COVID‐19 detection. However, lung infection by COVID‐19 is not quantifiable due to a lack of studies and the difficulty involved in the collection of large datasets. Segmentation is a preferred technique to quantify and contour the COVID‐19 region on the lungs using computed tomography (CT) scan images. To address the dataset problem, we propose a deep neural network (DNN) model trained on a limited dataset where features are selected using a region‐specific approach. Specifically, we apply the Zernike moment (ZM) and gray level co‐occurrence matrix (GLCM) to extract the unique shape and texture features. The feature vectors computed from these techniques enable segmentation that illustrates the severity of the COVID‐19 infection. The proposed algorithm was compared with other existing state‐of‐the‐art deep neural networks using the Radiopedia and COVID‐19 CT Segmentation datasets presented specificity, sensitivity, sensitivity, mean absolute error (MAE), enhance‐alignment measure (EMφ), and structure measure (Sm) of 0.942, 0.701, 0.082, 0.867, and 0.783, respectively. The metrics demonstrate the performance of the model in quantifying the COVID‐19 infection with limited datasets.  相似文献   
422.
Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient''s mobile device, that receives 12‐lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.Inspec keywords: cardiovascular system, diseases, patient monitoring, electrocardiography, medical signal processing, medical signal detection, electric sensing devices, medical disordersOther keywords: remote health monitoring system, cardiac disorder detection, clinical decision support system, cardiac care, electrocardiogram signal analysis, core diagnostic technique, cardiac ailments, arrhythmia, myocardial infarction, life threatening conditions, mobile gateway, patient mobile device, ECG signals, ECG sensor, remote server component, point‐of‐care device, fatal cardiac events  相似文献   
423.
424.
425.
This research investigates the controllability of linear and non-linear fractional dynamical systems with distributed delays in control using the ψ $$ \psi $$ -Caputo fractional derivative. For controllability of linear systems, the positive definiteness of Grammian matrix, which is characterized by Mittag–Leffler functions, is used to provide necessary and sufficient conditions. For the controllability of non-linear systems, the iterative technique with the completeness of X $$ X $$ is used to obtain sufficient conditions. Using the ψ $$ \psi $$ -Caputo fractional derivative, this study is new since it investigates the ideas of controllability. A couple of numerical results are offered to explain the theoretical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号