首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   57篇
  国内免费   6篇
电工技术   5篇
化学工业   112篇
金属工艺   10篇
机械仪表   5篇
建筑科学   6篇
矿业工程   1篇
能源动力   12篇
轻工业   13篇
水利工程   7篇
无线电   97篇
一般工业技术   104篇
冶金工业   15篇
原子能技术   3篇
自动化技术   123篇
  2024年   2篇
  2023年   17篇
  2022年   21篇
  2021年   40篇
  2020年   28篇
  2019年   23篇
  2018年   28篇
  2017年   30篇
  2016年   32篇
  2015年   22篇
  2014年   34篇
  2013年   36篇
  2012年   29篇
  2011年   27篇
  2010年   24篇
  2009年   16篇
  2008年   17篇
  2007年   24篇
  2006年   15篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
291.
Theoretical error rate performance of wireless communication systems are usually determined assuming that the perfect channel state information (CSI) is available at the receiver. However, in actual practice, the channel gains at the receiver are obtained via using some channel estimation (CE) techniques. Due to inherent presence of noise, the CE is not perfect resulting in the performance degradation. In this paper, we evaluate the error rate performance of an uplink multicarrier code-division multiple-access (MC-CDMA) system, considering different modulation techniques, where CE is performed using pilot symbol assisted (PSA) minimum mean-square error (MMSE) CE technique. The symbol error rate (SER) analysis of an uplink MC-CDMA system using multiuser detection techniques, such as MMSE and zero forcing (ZF), is presented under imperfect CE. Simulated results for SER are also shown to confirm the accuracy of the analytically derived results.  相似文献   
292.
In recent years, to solve the problem of face spoofing, momentous work has been done in this field, but still, there is a need for establishing counter measures to the biometric spoofing attacks. Although trained and evaluated on different databases, impressive results have been achieved in existing face anti‐spoofing techniques, but biometric authentication is a very significant problem as imposters are using lots of reconstructed samples or fake synthetic material or structure that can be used for various attack purposes. For the first time, to the best of our knowledge, this paper explains the security for face anti‐spoofing detection using linear discriminant analysis and validates the results by calculating HTER and accuracy on different databases (i.e., REPLAY ATTACK and CASIA). The proposed model, that is, three‐tier face anti‐spoofing detection model (3T‐FASDM), is used for the detection of the fake biometric user and works well for real‐time applications. The proposed methods tested on a set of state‐of‐the‐art anti‐spoofing features for the face mode gives a very low degree of complexity as 26 general image quality measures are applied to differentiate among legitimate and imposter samples. The outcomes obtained from publically available data show that this technique has improved performance and accuracy by analyzing the HTER and machine learning classifiers that are helpful to differentiate among real and fake traits.  相似文献   
293.
Understanding the fundamentals of nanoscale heat propagation is crucial for next‐generation electronics. For instance, weak van der Waals bonds of layered materials are known to limit their thermal boundary conductance (TBC), presenting a heat dissipation bottleneck. Here, a new nondestructive method is presented to probe heat transport in nanoscale crystalline materials using time‐resolved X‐ray measurements of photoinduced thermal strain. This technique directly monitors time‐dependent temperature changes in the crystal and the subsequent relaxation across buried interfaces by measuring changes in the c‐axis lattice spacing after optical excitation. Films of five different layered transition metal dichalcogenides MoX2 [X = S, Se, and Te] and WX2 [X = S and Se] as well as graphite and a W‐doped alloy of MoTe2 are investigated. TBC values in the range 10–30 MW m?2 K?1 are found, on c‐plane sapphire substrates at room temperature. In conjunction with molecular dynamics simulations, it is shown that the high thermal resistances are a consequence of weak interfacial van der Waals bonding and low phonon irradiance. This work paves the way for an improved understanding of thermal bottlenecks in emerging 3D heterogeneously integrated technologies.  相似文献   
294.
Fractal antenna arrays are geometry‐based thinned arrays having multiband applications. The major challenge of these arrays is their large number of elements at higher expansion factors. This article presents the thinning of fractal antenna arrays while maintaining an appropriate balance between the side lobe level and beam width by using various quantized fractal distribution functions. A 2D square fractal antenna array and 3DSierpinski gasket antenna array are considered in this article to validate the proposed distribution functions. Nearly one third of the antenna elements are thinned in each successive iteration except in the case of a one‐count distribution function. The proposed technique can simplify practical implementation and exhibits better performance for various parameters such as the side lobe level, side lobe angle, and half power beam width than fully populated fractal antenna arrays.  相似文献   
295.
Hybrid organic‐inorganic perovskites have attracted considerable attention after promising developments in energy harvesting and other optoelectronic applications. However, further optimization will require a deeper understanding of the intrinsic photophysics of materials with relevant structural characteristics. Here, the dynamics of photoexcited charge carriers in large‐area grain organic‐inorganic perovskite thin films is investigated via confocal time‐resolved photoluminescence spectroscopy. It is found that the bimolecular recombination of free charges is the dominant decay mechanism at excitation densities relevant for photovoltaic applications. Bimolecular coefficients are found to be on the order of 10?9 cm3 s?1, comparable to typical direct‐gap semiconductors, yet significantly smaller than theoretically expected. It is also demonstrated that there is no degradation in carrier transport in these thin films due to electronic impurities. Suppressed electron–hole recombination and transport that is not limited by deep level defects provide a microscopic model for the superior performance of large‐area grain hybrid perovskites for photovoltaic applications.  相似文献   
296.
297.
State‐of‐the‐art light‐emitting diodes (LEDs) are made from high‐purity alloys of III–V semiconductors, but high fabrication cost has limited their widespread use for large area solid‐state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase‐pure 2D Ruddlesden–Popper (RP) halide perovskites with a formula (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr?1 cm?2 at 744 nm with an ultralow turn‐on voltage of 1 V is obtained. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase‐pure 2D perovskites exhibit >14 h of stable operation at peak operating conditions with no droop at current densities of several Amperes cm?2 in comparison to mixtures of 2D/3D or 3D perovskites, which degrade within minutes.  相似文献   
298.
In the present paper, the computation of the phonon dynamics of binary Mg70Zn30 metallic glass is reported using the well-recognized model potential of Gajjar et al. The present study includes the phonon dispersion curves (PDC), elastic and thermodynamic properties such as longitudinal sound velocity υL, transverse sound velocity υT, Debye temperature θD, isothermal bulk modulus B T, modulus of rigidity G, Poisson’s ratio σ and Young’s modulus Y and specific heat capacity C V of the glass. Three theoretical models given by Hubbard–Beeby (HB), Takeno–Goda (TG) and Bhatia–Singh (BS) are used to compute the PDC. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru–Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are employed for the first time to study the effect of exchange and correlation in the aforesaid properties. The pseudo-alloy-atom (PAA) model is applied for the first time instead of Vegard’s Law.  相似文献   
299.
Single‐atom catalysts are heterogeneous catalysts with atomistically dispersed atoms acting as a catalytically active center, and have recently attracted much attention owing to the minimal use of noble metals. However, a scalable and inexpensive support that can stably anchor isolated atoms remains a challenge due to high surface energy. Here, copper‐halide polymer nanowires with sub‐nanometer pores are proposed as a versatile support for single‐atom catalysts. The synthesis of the nanowires is straightforward and completed in a few minutes. Well‐defined sub‐nanometer pores and a large free volume of the nanowires are advantageous over any other support material. The nanowires can anchor various atomistically dispersed metal atoms into the sub‐nanometer pores up to ≈3 at% via a simple solution process, and this value is at least twice as big as previously reported data. The hydrogen evolution reaction activity of ?18.0 A mgPt?1 at ?0.2 V overpotential shows its potential for single‐atom catalysts support.  相似文献   
300.
The basic nature of alkali hydroxides (NaOH, KOH) when added to mixing water, increases the pH in proportion to the level of salt addition. For alite (impure tricalcium silicate; MIII-Ca3SiO5) hydration, this pH increase accelerates the rate of hydration and reduces the duration of the induction, acceleration and deceleration regimes. This study evaluates alite hydration in solutions of varying compositions and alkalinities (0.1 M, 0.2 M and 0.5 M NaOH and KOH) in context of their heat release behavior and analysis of the solid/liquid phases. The modeling platform, μic, is used to simulate, describe and discriminate the impact of the pore solution chemistry and reaction product formation parameters on alite hydration (Bishnoi and Scrivener, 2009 [1]). Numerical predictions of the solid and liquid phase compositions and the heat release response show good agreement with experimental determinations. The simulations indicate that the effects up to the end of the induction period follow directly from a change in the pore solution composition under a solution controlled dissolution mechanism, which leads to the faster precipitation of portlandite. The changes in the main heat evolution peak appear to be related to an increase in the nucleation density of C–S–H in alkali hydroxide solutions. Examination under the SEM did not indicate significant difference in C–S–H morphology and composition in the presence of NaOH/KOH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号