全文获取类型
收费全文 | 1182篇 |
免费 | 23篇 |
国内免费 | 1篇 |
专业分类
电工技术 | 18篇 |
综合类 | 4篇 |
化学工业 | 205篇 |
金属工艺 | 22篇 |
机械仪表 | 52篇 |
建筑科学 | 51篇 |
矿业工程 | 1篇 |
能源动力 | 96篇 |
轻工业 | 112篇 |
水利工程 | 10篇 |
石油天然气 | 7篇 |
无线电 | 145篇 |
一般工业技术 | 221篇 |
冶金工业 | 25篇 |
原子能技术 | 8篇 |
自动化技术 | 229篇 |
出版年
2024年 | 20篇 |
2023年 | 37篇 |
2022年 | 76篇 |
2021年 | 109篇 |
2020年 | 59篇 |
2019年 | 78篇 |
2018年 | 77篇 |
2017年 | 55篇 |
2016年 | 43篇 |
2015年 | 38篇 |
2014年 | 44篇 |
2013年 | 90篇 |
2012年 | 40篇 |
2011年 | 55篇 |
2010年 | 37篇 |
2009年 | 42篇 |
2008年 | 43篇 |
2007年 | 32篇 |
2006年 | 28篇 |
2005年 | 19篇 |
2004年 | 22篇 |
2003年 | 18篇 |
2002年 | 16篇 |
2001年 | 12篇 |
2000年 | 14篇 |
1999年 | 16篇 |
1998年 | 10篇 |
1997年 | 9篇 |
1996年 | 9篇 |
1995年 | 6篇 |
1994年 | 3篇 |
1993年 | 7篇 |
1992年 | 2篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1977年 | 1篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有1206条查询结果,搜索用时 15 毫秒
31.
Muhammad S. Khan Syed A. Naqvi Adnan Iftikhar Sajid M. Asif Adnan Fida Raed M. Shubair 《国际射频与微波计算机辅助工程杂志》2020,30(9)
A compact four‐element multiple‐input‐multiple‐output (MIMO) antenna for ultra‐wideband (UWB) applications with WLAN band‐notched characteristics is proposed here. The proposed antenna has been designed to operate from 2 to 12 GHz while reject the frequencies between 4.9 to 6.4 GHz. The four antenna elements are placed orthogonal to attain the polarization diversity and high isolation. A thin stub connected to the ground plane is deployed as a LC notch filter to accomplish the rejected WLAN band in each antenna element. The mutual coupling between the adjacent elements is at least 17 dB while it has low indoor and outdoor envelop correlation (<0.45) and high gain with compact size of two boards, each measuring 50 × 25 mm2. To validate the concept, the prototype antenna is manufactured and measured. The comparison of the simulation results showed good agreement with the measured results. The low‐profile design and compact size of the proposed MIMO antenna make it a good candidate for diversity applications desired in portable devices operating in the UWB region. 相似文献
32.
Godfrey A. Akpakwu Gerhard P. Hancke Adnan M. Abu‐Mahfouz 《Transactions on Emerging Telecommunications Technologies》2020,31(2)
With the emerging applications of the Internet of Things (IoT), a congestion control mechanism becomes a critical phenomenon for efficient communication in networks of constrained devices. The Internet Engineering Task Force developed the constrained application protocol (CoAP) as a standard communication protocol that favors lightweight interoperability for accommodating resource‐constrained devices. However, the base CoAP specification congestion control is insensitive to various network conditions. Thus, differentiating the scenario of packet loss due to bit error rate and congestion, and identifying correct round trip time (RTT) of retransmitted message‐acknowledgement is quite essential to adapt the CoAP behavior based on the network status. In this paper, we present a context‐aware congestion control (CACC) approach for lightweight CoAP/user datagram protocol–based IoT traffic. The CACC proposes mechanisms that include retransmission timeout (RTO) estimator, retransmission count–based smoothed round‐trip‐time observation, lower bound RTO restriction approach, and aging concept. The proposed RTO estimators utilize the strong, weak, and failed RTT to identify exact network status and provide adaptive congestion control. The CACC incorporates the variable of retransmission count in request‐response interaction model to mitigate the negative variation in RTT due to the fluctuation in the IoT environment. Moreover, with lower bound RTO restriction approach, the unnecessary spurious retransmissions are avoided, and the aging mechanism limits the validity of the RTO value to improve the efficiency of the proposed scheme. The proposed model is validated against baseline CoAP and CoCoA+ using Contiki OS and the Cooja simulator. The results are impressive under different network topologies. 相似文献
33.
Hasnain Ahmed Muhammad Junaid Arshad Shah Muhammad Sarfraz Ahmad Amjad Hussain Zahid 《International Journal of Communication Systems》2020,33(14)
Traffic load balancing in data centers is an important requirement. Traffic dynamics and possibilities of changes in the topology (e.g., failures and asymmetries) make load balancing a challenging task. Existing end‐host–based schemes either employ the predominantly used ECN or combine it with RTT to get congestion information of paths. Both congestion signals, ECN and RTT, have limitations; ECN only tells whether the queue length is above or below a threshold value but does not inform about the extent of congestion; similarly, RTT in data center networks is on the scale of up to few hundreds of microseconds, and current data center operating systems lack fine‐grained microsecond‐level timers. Therefore, there is a need of a new congestion signal which should give accurate information of congestion along the path. Furthermore, in end‐host–based schemes, detecting asymmetries in the topology is challenging due to the inability to accurately measure RTT on the scale of microseconds. This paper presents QLLB, an end‐host–based, queue length–based load balancing scheme. QLLB employs a new queue length–based congestion signal that gives an exact measure of congestion along the paths. Furthermore, QLLB uses relative‐RTT to detect asymmetries in the topology. QLLB is implemented in ns‐3 and compared with ECMP, CONGA, and Hermes. The results show that QLLB significantly improves performance of short flows over the other schemes and performs within acceptable level, of CONGA and Hermes, for long flows. In addition, QLLB effectively detects asymmetric paths and performs better than Hermes under high loads. 相似文献
34.
Adnan Maqbool Rizwan Ahmed Malik Ali Hussain Fazli Akram Muhammad Asif Rafiq Mohsin Saleem Fazal Ahmad Khalid Tae-Kwon Song Won-Jeong Kim Myong-Ho Kim 《Journal of Electroceramics》2018,41(1-4):99-104
Heat treatment of ceramics is an important process to tailor the fine electromechanical properties. To explore the criteria for optimized heat treatment in a perovskite structure of (1–x)Bi1.05FeO3–xBaTiO3 (BF–BT100x) system, the structural phase relation, ferroelectric and piezoelectric response of BF–BT36 and BF–BT40 ceramics prepared by furnace cooling (FC) and quenching process were investigated. The X-ray diffraction examination showed single pseudocubic perovskite structure for all the ceramics. The homogenous microstructure was obtained for all ceramics with relatively large grain size in the furnace cooled samples. Well saturated ferroelectric hysteresis loops and enhanced piezoelectric constant (d33?=?97 pC/N) were achieved by quenching process. Dielectric curve of BF–BT36 showed large dielectric constant at its Curie temperature, however, BF–BT40 showed diffused relaxor-like dielectric anomalies. Quenched BF–BT36 samples showed typical butterfly like field induced strain curves, however negative strain decreased in BF–BT40 ceramics. From these investigated study, it is observed that BF–BT ceramics are very sensitive to the heat treatment process (furnace cooling and quenching) on the dielectric, electromechanical properties. 相似文献
35.
Adnan Bibic Linda Knutsson Freddy Ståhlberg Ronnie Wirestam 《Magma (New York, N.Y.)》2010,23(3):125-137
Purpose
To investigate a wavelet-based filtering scheme for denoising of arterial spin labeling (ASL) data, potentially enabling reduction of the required number of averages and the acquisition time. 相似文献36.
37.
Yousef M. Hijji Rajeesha Rajan Amjad M. Shraim 《International journal of molecular sciences》2022,23(21)
Interest in developing selective and sensitive metal sensors for environmental, biological, and industrial applications is mounting. The goal of this work was to develop a sensitive and selective sensor for certain metal ions in solution. The goal was achieved via (i) preparing the sensor ((E)-2-((pyridine-3-ylimino)methyl)phenol) (3APS) using microwave radiation in a short time and high yield and (ii) performing spectrophotometric titrations for 3APS with several metal ions. 3APS, a Schiff base, was prepared in 5 min and in a high yield (95%) using microwave-assisted synthesis. The compound was characterized by FTIR, XRD, NMR, and elemental analysis. Spectrophotometric titration of 3APS was performed with Al(III), Ba(II), Cd(II), Co(II), Cu(II), Fe(III), Mn(II), Ni(II), and Zn(II). 3APS showed good abilities to detect Al(III) and Fe(III) ions fluorescently and Cu(II) ion colorimetrically. The L/M stoichiometric ratio was 2:1 for Cu(II) and 1:1 for Al(III) and Fe(III). Low detection limits (μg/L) of 324, 20, and 45 were achieved for Cu(II), Al(III), and Fe(III), respectively. The detection of aluminum was also demonstrated in antiperspirant deodorants, test strips, and applications in secret writing. 3APS showed high fluorescent selectivity for Al(III) and Fe(III) and colorimetric selectivity towards Cu(II) with detection limits lower than corresponding safe drinking water guidelines. 相似文献
38.
David Schumacher Adelina Curaj Mareike Staudt Sakine Simsekyilmaz Isabella Kanzler Peter Boor Barbara Mara Klinkhammer Xiaofeng Li Octavian Bucur Adnan Kaabi Yichen Xu Huabo Zheng Pakhwan Nilcham Alexander Schuh Mihaela Rusu Elisa A. Liehn 《International journal of molecular sciences》2022,23(23)
Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar. We found that neutrophils sustain the proliferation of fibroblasts, remodeling, differentiation, migration and inflammation, predominantly by IL-1 and PPARγ pathways (n = 3). They also significantly inhibit the mRNA expression of fibrillar collagen, maintaining a reduced stiffness in isolated myofibroblasts (n = 4–5). Reducing the neutrophil infiltration in CCR1−/− resulted in increased mRNA expression of collagen 11, moderate expression of collagen 19 and low expression of collagen 13 and 26 in the scar 4 weeks post infarction compared with other groups (n = 3). Mononuclear cells increased the synthesis of all collagen subtypes and upregulated the NF-kB, angiotensin II and PPARδ pathways (n = 3). They increased the synthesis of collagen subtypes 1, 3, 5, 16 and 23 but reduced the expression of collagens 5 and 16 (n = 3). CCR2−/− scar tissue showed higher levels of collagen 13 (n = 3), in association with a significant reduction in stiffness (n = 4–5). Upregulation of the inflammation-related genes in myofibroblasts mostly modulated the fibrillar collagen subtypes, with less effect on the FACIT, network-forming and globular subtypes (n = 3). The upregulation of proliferation and differentiation genes in myofibroblasts seemed to be associated only with the fibrillar collagen subtype, whereas angiogenesis-related genes are associated with fibrillar, network-forming and multiplexin subtypes. In conclusion, although we intend for our findings to deepen the understanding of the mechanism of healing after myocardial infarction and scar formation, the process of collagen synthesis is highly complex, and further intensive investigation is needed to put together all the missing puzzle pieces in this still incipient knowledge process. 相似文献
39.
M. alba L. is a valuable nutraceutical plant rich in potential bioactive compounds with promising anti-gouty arthritis. Here, we have explored bioactives, signaling pathways, and key proteins underlying the anti-gout activity of M. alba L. leaves for the first-time utilizing network pharmacology. Bioactives in M. alba L. leaves were detected through GC-MS (Gas Chromatography-Mass Spectrum) analysis and filtered by Lipinski’s rule. Target proteins connected to the filtered compounds and gout were selected from public databases. The overlapping target proteins between bioactives-interacted target proteins and gout-targeted proteins were identified using a Venn diagram. Bioactives-Proteins interactive networking for gout was analyzed to identify potential ligand-target and visualized the rich factor on the R package via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on STRING. Finally, a molecular docking test (MDT) between bioactives and target proteins was analyzed via AutoDock Vina. Gene Set Enrichment Analysis (GSEA) demonstrated that mechanisms of M. alba L. leaves against gout were connected to 17 signaling pathways on 26 compounds. AKT1 (AKT Serine/Threonine Kinase 1), γ-Tocopherol, and RAS signaling pathway were selected as a hub target, a key bioactive, and a hub signaling pathway, respectively. Furthermore, three main compounds (γ-Tocopherol, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine, and Lanosterol acetate) and three key target proteins—AKT1, PRKCA, and PLA2G2A associated with the RAS signaling pathway were noted for their highest affinity on MDT. The identified three key bioactives in M. alba L. leaves might contribute to recovering gouty condition by inactivating the RAS signaling pathway. 相似文献
40.
Adnan Umar Khan Naveed Ahmed Syed Tauseef Mohyud-Din Ilyas Khan Dumitru Baleanu Kottakkaran Sooppy Nisar 《计算机、材料和连续体(英文)》2021,66(2):1563-1576
Thermal transport investigation in colloidal suspensions is taking a significant research direction. The applications of these fluids are found in various industries, engineering, aerodynamics, mechanical engineering and medical sciences etc. A huge amount of thermal transport is essential in the operation of various industrial production processes. It is a fact that conventional liquids have lower thermal transport characteristics as compared to colloidal suspensions. The colloidal suspensions have high thermal performance due to the thermophysical attributes of the nanoparticles and the host liquid. Therefore, researchers focused on the analysis of the heat transport in nanofluids under diverse circumstances. As such, the colloidal analysis of H2O composed by γAl2O3 and Al2O3 is conducted over an elastic cylinder. The governing flow models of γAl2O3/H2O and Al2O3/H2O is reduced in the dimensionless form by adopting the described similarity transforms. The colloidal models are handled by implementing the suitable numerical technique and provided the results for the velocity, temperature and local thermal performance rate against the multiple flow parameters. From the presented results, it is shown that the velocity of Al2O3–H2O increases promptly against a high Reynolds number and it decreases for high-volume fraction. The significant contribution of the volumetric fraction is examined for thermal enhancement of nanofluids. The temperature of Al2O3–H2O and γAl2O3–H2O significantly increases against a higher ϕ. Most importantly, the analysis shows that γAl2O3–H2O has a high local thermal performance rate compared to Al2O3–H2O. Therefore, it is concluded that γAl2O3–H2O is a better heat transfer fluid and is suitable for industrial and technological uses. 相似文献