首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5811篇
  免费   370篇
  国内免费   47篇
电工技术   75篇
综合类   20篇
化学工业   1625篇
金属工艺   126篇
机械仪表   223篇
建筑科学   157篇
矿业工程   4篇
能源动力   377篇
轻工业   573篇
水利工程   82篇
石油天然气   36篇
无线电   562篇
一般工业技术   1085篇
冶金工业   285篇
原子能技术   83篇
自动化技术   915篇
  2024年   19篇
  2023年   111篇
  2022年   301篇
  2021年   408篇
  2020年   303篇
  2019年   332篇
  2018年   365篇
  2017年   303篇
  2016年   331篇
  2015年   200篇
  2014年   330篇
  2013年   544篇
  2012年   311篇
  2011年   315篇
  2010年   280篇
  2009年   246篇
  2008年   170篇
  2007年   145篇
  2006年   134篇
  2005年   96篇
  2004年   74篇
  2003年   71篇
  2002年   55篇
  2001年   44篇
  2000年   37篇
  1999年   38篇
  1998年   69篇
  1997年   59篇
  1996年   43篇
  1995年   54篇
  1994年   25篇
  1993年   34篇
  1992年   30篇
  1991年   25篇
  1990年   24篇
  1989年   24篇
  1988年   15篇
  1987年   30篇
  1986年   30篇
  1985年   22篇
  1984年   30篇
  1983年   26篇
  1982年   16篇
  1981年   8篇
  1980年   14篇
  1979年   13篇
  1978年   12篇
  1977年   11篇
  1976年   14篇
  1975年   9篇
排序方式: 共有6228条查询结果,搜索用时 15 毫秒
991.
Two biological methods for treatment of cheese whey and concentrated cheese whey were investigated in this research. As the first method, fermentation of cheese whey for production of lactic acid, in an immobilized cell reactor (ICR) was successfully carried out. The immobilisation of Lactobacillus bulgaricus was performed by the enriched cells cultured media harvested at exponential growth phase. Furthermore, the FTIR analysis has been done to prove the production of lactic acid. The COD removal during the continuous process for both whey and concentrated whey was above 70% which showed the capability of reaction for wastewater treatment. The cells were immobilised by sodium alginate as a perfect polymer in this regard. The maximum produced lactic acid from whey was 10.7 g l?1 at 0.125 h?1 and 19.5 g l?1 from concentrated whey at 0.063 h?1. Finally it can be concluded that the process is efficient for lactic acid production and COD removal simultaneously. As the second studied method, whey and concentrated cheese whey were used as the sources of carbon in a microbial fuel cell. The power densities of 188.8 and 288.12 mW m?2 were recorded for whey-fed and concentrated whey-fed MFCs while the COD removal were 95% and 86% respectively. Biological wastewater treatment can be a very efficient alternative for traditional wastewater treatment which selecting any and or integrating of them depends on specific applications needed to be achieved.  相似文献   
992.
In this study, the phase inversion-based co-extrusion method was employed to fabricate a structural-improved electrolyte/anode dual-layer hollow fiber (HF) precursor, which was then co-sintered at 1450 °C. The electrolyte structures were thoroughly investigated by varying the loading of electrolyte material (i.e. Yttria-stabilized zirconia, YSZ) with differing particle sizes (i.e. micron, sub-micron, and nano-sized) during suspension preparation. The results showed that the most promising electrolyte layer with thin, dense, gas-tight, and defect-free properties was obtained by mixing 70% submicron-YSZ and 30% nano-YSZ in electrolyte suspension (E-0.7sub0.3nano). This electrolyte formulation co-extruded with a thick nickel-oxide-YSZ (NiO-YSZ) anode layer yielded the highest bending strength of 85 MPa, providing major mechanical strength to the HF. Besides that, the nitrogen permeability value at 2.87 × 10?6 mol m?2 s?1 Pa?1 suggested that the electrolyte was gas-tight, preventing fuel and oxidant transport. The fiber was then reduced to nickel (Ni)-cermet anode. It was developed to be a complete micro-tubular solid oxide fuel cell (MT-SOFC) by depositing the lanthanum strontium cobalt ferrite (LSCF)/YSZ cathode via brush painting on the dual-layer HF. The cell was fed with hydrogen gas and yielded an open-circuit voltage (OCV) as high as 1.06 V with maximum power density of 0.243 W cm?2, at 875 °C. Based on this test, it was found that the electrolyte structural-modified dual-layer hollow fiber-based MT-SOFC using mixed particle sizes may result in a promising OCV. However, the relatively low value for power density may be due to a less porous anode; thus, improvements in the anode's structure are required in future research.  相似文献   
993.
This paper presents a non-stoichiometric and thermodynamic model for steam reforming of Imperata cylindrica bio-oil for biohydrogen production. Thermodynamic analyses of major bio-oil components such as formic acid, propanoic acid, oleic acid, hexadecanoic acid and octanol produced from fast pyrolysis of I. cylindrica was examined. Sensitivity analyses of the operating conditions; temperature (100–1000 °C), pressure (1–10 atm) and steam to fuel ratio (1–10) were determined. The results showed an increase in biohydrogen yield with increasing temperature although the effect of pressure was negligible. Furthermore, increase in steam to fuel ratio favoured biohydrogen production. Maximum yield of 60 ± 10% at 500–810 °C temperature range and steam to fuel ratio 5–9 was obtained for formic acid, propanoic acid and octanol. The heavier components hexadecanoic and oleic acid maximum hydrogen yield are 40% (740 °C and S/F = 9) and 43% (810 °C and S/F = 8) respectively. However, the effect of pressure on biohydrogen yield at the selected reforming temperatures was negligible. Overall, the results of the study demonstrate that the non-stoichiometry and thermodynamic model can successfully predict biohydrogen yield as well as the composition of gas mixtures from the gasification and steam reforming of bio-oil from biomass resources. This will serve as a useful guide for further experimental works and process development.  相似文献   
994.
This report presents experimental results derived from a Proton Exchange Membrane fuel cell with a serpentine flow plate design. The investigation seeks to explore the effects of some parameters like cell operational temperature, humidification and atmospheric pressure on the general performance and efficiency of PEM fuel cell using MATLAB. A number of codes were written to generate the polarization curve for a single stack and five (5) cell stack fuel cell at various operating conditions. Detailed information of hydrogen and oxygen consumption and the effect they have on the fuel cell performance were critically analysed. The investigation concluded that the open circuit voltage generated was less than the theoretical voltage predicted in the literature. It was also noticed that an increase in current or current density reduced the voltage derived from the fuel cell stack. The experiment also clearly confirmed that when more current is being drawn from the fuel cell, more water will also be generated at the cathode section of the cell hence the need for an effective water management to improve the performance of the fuel cell. Other parameters like the stack efficiency and power density were also analysed using the experimental results obtained.  相似文献   
995.
Herein, we report the green synthesis of silver nanoparticles (OE-Ag NPs) by ecofriendly green processes using biological molecules of Olea europaea leaf extract. Green synthesized OE-Ag NPs were successfully characterized using different spectroscopic techniques. Antibacterial activity of OE-Ag NPs was assessed against four different bacteriological strains using the dilution serial method. The cytotoxic potential was determined against MCF-7 carcinoma cells using MTT assay in terms of cell viability percentage. Antioxidant properties were evaluated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Biocompatibility was further examined by incubating the synthesized NPs with hMSC cells for 24 h. The results were demonstrated that synthesized OE-Ag NPs presented excellent log10 reduction in the growth of all the tested bacterial strains, which as statistically equivalent (p > 0.05) to the standard antibiotic drug. Moreover, they also demonstrated excellent cytotoxic efficacy against the MCF-7 carcinoma cells compared to plant lead extract and Com-Ag NPs. Green synthesized OE-Ag NPs appeared more biocompatible to hMSC and 293T cells compared to Com-Ag NPs. Excellent biological results of the OE-Ag NPs might be attributed to the synergetic effect of NPs’ properties and the adsorbed secondary metabolites of plant leaf extract. Hence, this study suggests that synthesized OE-Ag NPs can be a potential contender for their various biological and nutraceutical applications. Moreover, this study will open a new avenue to produce biocompatible nanoparticles with additional biological functionalities from the plants.  相似文献   
996.
The pyramid architecture is a powerful topology in the area of computer vision. On the other hand, the 3D mesh architecture possesses rich topological features which make it suitable for building scalable parallel processor systems. The usefulness of these two architectures has led us to consider the problem of embedding pyramids into 3D meshes, for which we present two solutions. The first solution, termednatural embedding,maps a pyramid into a 3D mesh such that each level of the pyramid is mapped to a single level of the 3D mesh. The second solution, termedmultiple embedding,allows simultaneous embedding of multiple pyramids into a single 3D mesh. The quality of both solutions is evaluated using dilation and expansion measures. Using the multiple embedding, we are able to obtain an average dilation of 1.26 and a near-optimal expansion of 1.12.  相似文献   
997.
In the present work, novel modality for lung cancer intervention has been explored. Primary literature has established the potential role of cyclooxygenase-2 (COX-2) inhibitor in regression of multiple forms of carcinomas. To overcome its poor water solubility and boost anticancer activity, etoricoxib (ETO) was chosen as a therapeutic candidate for repurposing and formulated into a nanoemulsion (NE). The prepared ETO loaded NE was characterized for the surface charge, droplet size, surface morphology, and in vitro release. The optimized ETO loaded NE was then investigated for its anticancer potential employing A549 lung cancer cell line via cytotoxicity, apoptotic activity, mitochondrial membrane potential activity, cell migration assay, cell cycle analysis, Caspase-3, 9, and p53 activity by ELISA and molecular biomarker analysis through RT-PCR test. The developed ETO-NE formulation showed adequate homogeneity in the droplet size distribution with polydispersity index (PDI) of (0.2 ± 0.03) and had the lowest possible droplet size (124 ± 2.91 nm) and optimal negative surface charge (−8.19 ± 1.51 mV) indicative of colloidal stability. The MTT assay results demonstrated that ETO-NE exhibited substantial anticancer activity compared to the free drug. The ETO-NE showed a substantially potent cytotoxic effect against lung cancer cells, as was evident from the commencement of apoptosis/necrotic cell death and S-phase cell cycle arrests in A549 cells. The study on these molecules through RT-PCR confirmed that ETO-NE is significantly efficacious in mitigating the abundance of IL-B, IL-6, TNF, COX-2, and NF-kB as compared to the free ETO and control group. The current study demonstrates that ETO-NE represents a feasible approach that could provide clinical benefits for lung cancer patients in the future.  相似文献   
998.
Recently, renewable energy resources and their impacts have sparked a heated debate to resolve the Australian energy crisis. There are many projects launched throughout the country to improve network security and reliability. This paper aims to review the current status of different renewable energy resources along with their impacts on society and the environment. Besides, it provides for the first time the statistics of the documents published in the field of renewable energy in Australia. The statistics include information such as the rate of papers published, possible journals for finding relative paper, types of documents published, top authors, and the most prevalent keywords in the field of renewable energy in Australia. It will focus on solar, wind, biomass, geothermal and hydropower technologies and will investigate the social and environmental impacts of these technologies.  相似文献   
999.
Motivated by the drawbacks of solution phase processing, an all-dry resist formation process is presented that utilizes amorphous zinc-imidazolate (aZnMIm) films deposited by atomic/molecular layer deposition (ALD/MLD), patterned with electron beam lithography (EBL), and developed by novel low temperature (120 °C) gas phase etching using 1,1,1,5,5,5-hexafluoroacetylacetone (hfacH) to achieve well-resolved 22 nm lines with a pitch of 30 nm. The effects of electron beam irradiation on the chemical structure and hfacH etch resistance of aZnMIm films are investigated, and it is found that electron irradiation degrades the 2-methylimidazolate ligands and transforms aZnMIm into a more dense material that is resistant to etching by hfacH and has a C:N:Zn ratio effectively identical to that of unmodified aZnMIm. These findings showcase the potential for aZnMIm films to function in a dry resist technology. Sensitivity, contrast, and critical dimensions of the patterns are determined to be 37 mC cm−2, 0.87, and 29 nm, respectively, for aZnMIm deposited on silicon substrates and patterned at 30 keV. This work introduces a new direction for solvent-free resist processing, offering the prospect of scalable, high-resolution patterning techniques for advanced semiconductor fabrication processes.  相似文献   
1000.
Experiments were conducted to see the effect of irradiation on the thermoluminescence emission from dust of plant nuts such as almond, peanut, pinenut and walnut. Inorganic dust particulate minerals adhering to the nut's surface were collected from unirradiated and irradiated (0.5, 1.0 and 1.5 kGy) samples, and analysed for their thermoluminescence (TL) intensities in the temperature range of 80–320°C at a temperature rate of 10°C/s. It was observed that peaks of the TL signals appeared at 200°C in each case and generally the magnitude of the peak signals of irradiated samples was manifold that of unirradiated controls. Regression and correlation analysis of the data indicated strong relationship between radiation adsorbed dose and TL values at each temperature (r ⪈ 0.96). It was concluded that TL measurements could serve as a fast and reliable method for identifying as well as determining absorbed dose in irradiated plant nuts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号