首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   107篇
  国内免费   1篇
电工技术   5篇
化学工业   569篇
金属工艺   11篇
机械仪表   10篇
建筑科学   34篇
矿业工程   5篇
能源动力   18篇
轻工业   193篇
水利工程   3篇
无线电   18篇
一般工业技术   97篇
冶金工业   15篇
原子能技术   1篇
自动化技术   38篇
  2024年   2篇
  2023年   8篇
  2022年   93篇
  2021年   205篇
  2020年   46篇
  2019年   42篇
  2018年   38篇
  2017年   53篇
  2016年   44篇
  2015年   43篇
  2014年   53篇
  2013年   56篇
  2012年   57篇
  2011年   58篇
  2010年   46篇
  2009年   48篇
  2008年   31篇
  2007年   25篇
  2006年   19篇
  2005年   9篇
  2004年   11篇
  2003年   5篇
  2002年   12篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
41.
The kinetics of the reaction between acetic acid and epichlorohydrin in the presence of chromium acetate and chromic anhydride have been studied. The isolation method revealed the reagents reacted with partial orders. A reduction of chromium from the oxidation level +6 to +3 has been observed when chromic anhydride was used as catalyst. A mathematical model for the overall process has been developed and the mechanism of reaction discussed.  相似文献   
42.
Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.  相似文献   
43.
Physical exercise is known to influence hormonal mediators of appetite, but the effect of short-term maximal intensity exercise on plasma levels of appetite hormones and cytokines has been little studied. We investigated the effect of a 30 s Wingate Test, followed by a postprandial period, on appetite sensations, food intake, and appetite hormones. Twenty-six physically active young males rated their subjective feelings of hunger, prospective food consumption, and fatigue on visual analogue scales at baseline, after exercise was completed, and during the postprandial period. Blood samples were obtained for the measurement of nesfatin-1, ghrelin, leptin, insulin, pancreatic polypeptide (PP), human growth factor (hGH) and cytokine interleukin-6 (IL-6), irisin and plasma lactate concentrations, at 30 min before exercise, immediately (210 s) after exercise, and 30 min following a meal and at corresponding times in control sedentary males without ad libitum meal intake, respectively. Appetite perceptions and food intake were decreased in response to exercise. Plasma levels of irisin, IL-6, lactate, nesfatin-1 and ghrelin was increased after exercise and then it was returned to postprandial/control period in both groups. A significant rise in plasma insulin, hGH and PP levels after exercise was observed while meal intake potentiated this response. In conclusion, an acute short-term fatiguing exercise can transiently suppress hunger sensations and food intake in humans. We postulate that this physiological response involves exercise-induced alterations in plasma hormones and the release of myokines such as irisin and IL-6, and supports the notion of existence of the skeletal muscle–brain–gut axis. Nevertheless, the detailed relationship between acute exercise releasing myokines, appetite sensations and impairment of this axis leading to several diseases should be further examined.  相似文献   
44.
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.  相似文献   
45.
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.  相似文献   
46.
Introduction and purpose of the study: SARS-CoV-2 virus does not only affect the respiratory system. It may cause damage to many organ systems with long-term effects. The latest scientific reports inform that this virus leaves a long-term trace in the nervous, circulatory, respiratory, urinary and reproductive systems. It manifests itself in disturbances in the functioning of the organs of these systems, causing serious health problems. The aim of the study was to review the latest research into the long-term effects of COVID-19 and determine how common these symptoms are and who is most at risk. Based on a literature review using the electronic scientific databases of PubMed and Web of Science on the long-term effects of SARS-CoV-2 infection, 88 studies were included in the analysis. The information contained in the analyzed literature shows that the SARS-CoV-2 virus can cause multi-organ damage, causing a number of long-term negative health complications. Conclusions: There is evidence that the virus can cause long-term complications lasting more than six months. They mainly concern disturbances in the functioning of the nervous, circulatory and respiratory systems. However, these studies are small or short-lasting, and many are speculative.  相似文献   
47.
The application of vibrational spectroscopy for the determination of total polyphenols content, antioxidant activity, colour parameters, and fat level in chips originated from yellow-, red- and purple-fleshed potato varieties is reported. Raman, infrared (IR) and near-infrared (NIR) spectra of the laboratory-prepared chips were collected. Combining spectral data with the results of reference analyses, partial least squares regression models were built. To characterise and compare the elaborated models, the relative standard errors of prediction were calculated for calibration and validation sets. In the case of total phenolics quantification by Raman/IR/NIR techniques, these errors (%) amounted to 4.0/7.0/7.1 and 6.4/8.5/8.4 for calibration and validation samples, respectively, whereas they were 4.9/7.7/4.8 and 6.6/8.3/6.8 for antioxidant activity. The obtained results demonstrate that both infrared and Raman spectroscopy can effectively replace commonly used extraction methods. It follows that Raman spectroscopy has the highest potential to be adopted for the online potato-derived product analysis.  相似文献   
48.
Reducing sugars and free amino acids were analysed in slices from three potato cultivars before and after blanching (0-3 min). The potato crisps were deep fried at 185 °C for different times (3-8.5 min), and analysed for the concentration of acrylamide (AA) and moisture. Potato cultivar and the temperature during processing were important parameters for AA formation in potato crisps. The amount increased with an increase in the processing time. Blanching before deep-frying reduced the concentration of free asparagine and reducing sugar in the raw material. We found no effect of blanching as pretreatment on the concentration of AA in the potato crisps. Any relationship was not detected between the levels of asparagine in the different cultivars, before and after blanching, and the formation of AA in the crisp products. However, it was shown that the content of reducing sugars determined the level of AA after frying.  相似文献   
49.
Inflammation and oxidative stress are thought to be involved in, or associated with, the development of obesity, dyslipidemia, hepatic steatosis, and insulin resistance. This work was designed to determine the evolution of inflammation and oxidative stress during onset and progression of hepatic steatosis and glucose intolerance. Seventy-five male Wistar rats were divided to control and high-fat high-fructose (HFHFr) groups. A subgroup of each group was sacrificed at 4, 8, 12, 16, and 20 weeks. HFHFr-fed rats exhibited overweight, glucose intolerance, and hepatic steatosis with increased contents of hepatic diacylglycerols and ceramides. The HFHFr diet increased hepatic interleukin 6 (IL-6) protein and adipose tissue CCL5 gene expression and hepatic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity but not mitochondrial reactive oxygen species (ROS) production. The HFHFr diet decreased plasma and liver levels of isoprostanoid metabolites as well as plasma thiobarbituric acid-reactive substance (TBARS) levels. Hepatic glutathione content was decreased with a moderate decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) with the HFHFr diet. Overall, HFHFr diet led to hepatic lipid accumulation and glucose intolerance, which were accompanied by only moderate inflammation and oxidative stress. Most of these changes occurred at the same time and as early as 8 or 12 weeks of diet treatment. This implies that oxidative stress may be the result, not the cause, of these metabolic alterations, and suggests that marked hepatic oxidative stress should probably occur at the end of the steatotic stage to result in frank insulin resistance and steatohepatitis. These findings need to be further evaluated in other animal species as well as in human studies.  相似文献   
50.
Neutrophils are a type of granulocyte important in the “first line of defense” of the innate immune system. Upon activation, they facilitate the destruction of invading microorganisms by the production of superoxide radicals, as well as the release of the enzymatic contents of their lysozymes. These enzymes include specific serine proteases: cathepsin G, neutrophil elastase, proteinase 3, as well as the recently discovered neutrophil serine protease 4 (NSP4). Under normal conditions, the proteolytic activity of neutrophil proteases is tightly regulated by endogenous serpins; however, this mechanism can be subverted during tissue stress, thereby resulting in the uncontrolled activity of serine proteases, which induce chronic inflammation and subsequent pathology. Herein, we describe the development of low‐molecular‐weight activity‐based probes that specifically target the active sites of neutrophil proteases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号