首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   107篇
  国内免费   1篇
电工技术   5篇
化学工业   583篇
金属工艺   12篇
机械仪表   10篇
建筑科学   35篇
矿业工程   5篇
能源动力   18篇
轻工业   193篇
水利工程   3篇
无线电   22篇
一般工业技术   95篇
冶金工业   17篇
原子能技术   1篇
自动化技术   36篇
  2024年   2篇
  2023年   8篇
  2022年   107篇
  2021年   206篇
  2020年   46篇
  2019年   42篇
  2018年   38篇
  2017年   53篇
  2016年   44篇
  2015年   43篇
  2014年   53篇
  2013年   55篇
  2012年   57篇
  2011年   59篇
  2010年   47篇
  2009年   47篇
  2008年   33篇
  2007年   23篇
  2006年   19篇
  2005年   10篇
  2004年   10篇
  2003年   6篇
  2002年   12篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1988年   1篇
排序方式: 共有1035条查询结果,搜索用时 15 毫秒
991.
We describe a new semiautomatic image processing method for detecting the cartilage boundaries in optical coherence tomography (OCT). In particular, we focus on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. The novel boundary-detection system presented here consists of (1) an adaptive filtering technique for image enhancement and speckle reduction, (2) edge detection, and (3) edge linking by graph searching. The procedure requires several steps and can be automated. The quantitative measurements of cartilage thickness on OCT images correlated well with measurements from histology.  相似文献   
992.
Deterioration of mortars by weathering is usually of great importance and is brought about by the disruptive action of alternate freezing and thawing of free water within the material. As it appears that applications of methyl hydroxy ethyl cellulose (MHEC) and polyvinyl acetate (PVA) are very beneficial in improving frost resistance, special attention has been paid to observing the changes in microstructural features of polymer modified composites exposed to the destructive effects of water and low temperature. The presence of both admixtures in normally cured composites has been found to have a significant effect on their microstructure. The microstructure is mostly determined by the quantity of MHEC used, as it provides water retention. The application of PVA slightly affects the pore size distribution, significantly improving the adhesive properties of composites. The present research revealed an interrelationship between the quantity of admixtures used and the micro-structural features of composites subjected to freezing and thawing. The mercury intrusion porosimetry results suggest the significant effect of rehydration process with respect to the damage caused by the action of crystallised ice.  相似文献   
993.
994.
The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data.  相似文献   
995.
Bionanocomposites based on poly(trimethylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) (PTF-b-F-PTMO) with various contents of carbon nanofibers, graphene nanoplatelets and a hybrid system of these nanoparticles are synthesized via in situ polymerization. The dispersion of nanoparticles in the nanocomposites is determined using a scanning electron microscope and optical microscopy images. The thermal properties are studied employing differential scanning calorimetry, dynamic mechanical thermal analysis, and thermogravimetric analysis. The melt viscosity of the synthesized materials is determined using rheological measurements. Mechanical properties, along with the thermal and electrical conductivity, are also analyzed. The synthesized polymer nanocomposites are processed using injection molding and they display mechanical properties of elastomers during mechanical testing, which indicates that the obtained materials are, in fact, thermoplastic elastomers (TPE). Compared to a neat matrix (PTF-b-F-PTMO 50/50), the incorporation of nanoparticles causes an increase in the value of the degree of crystallinity and the value of the tensile modulus values (E) of the nanocomposites. Such reinforced bionanocomposites are especially interesting from an applicative point of view. They can be used as components of fuel systems, bumpers, or cupholders.  相似文献   
996.
Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod‐shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y‐dimension, one being a sphere and the other a rod shape. The results show a significantly larger amount of protein attaching from both plasma and serum on the rod‐like particles compared to the spheres. Interrogation of the protein corona by liquid chromatography–mass spectrometry reveals shape‐dependent differences in the adsorption of immunoglobulins and albumin proteins from both plasma and serum. This study points to the need for taking nanoparticle shape into consideration because it can have a significant impact on the fate and therapeutic potential of nanoparticles when placed in the body.  相似文献   
997.
The iron compounds (iron(III) oxide‐hydroxide monohydrate FeO(OH) × H2O, iron(III) oxide Fe2O3, and ascorbic acid) were used as oxygen scavengers modifiers in laminating of polymer films. This oxygen‐scavenging system was coated on preselected films (low density polyethylene [LDPE] and polyethylene terephthalate [PET]) from which the laminates were formed. It presents the new form of composite material packaging that has the function of oxygen scavenging, which could be suitable for food packaging. The scope of the research included studies of morphology of oxygen scavengers by scanning electron microscope and their average particle size distribution measure by particle size analyzer, the effect of type, and concentration of these substances on viscosity of adhesive and seal strength of laminates. The Fourier‐transform infrared spectroscopy (FTIR) of laminates was also performed to observe the potential interaction of functional groups of polyurethane adhesives with oxygen scavenger components. The most important ability of the developed system for oxygen scavenging was confirmed by measuring oxygen concentration (% vol) in a headspace with the prepared laminates. The concentrations of selected oxygen scavengers (4‐6 wt%) and their combinations were studied. The most effective oxygen scavenger system integrated within the PE/PET composite film consists of 6 wt% ascorbic acid and 1 wt% FeO(OH) × H2O, where the oxygen concentration of 1.0 vol% (±0.20 vol%) was obtained after 15 days of storage. It was found that in this system the oxygen scavenging reaction occurs through ascorbate oxidation to dehydroascorbic acid, which is catalyzed by reduction of Fe3+ to Fe2+ ions.  相似文献   
998.
The on‐column selective conversion of guanosine to thioguanosine (tG) yields modified oligomers that exhibit destabilisation over the fully complementary duplex. Restoration to a stabilised duplex is induced through thio‐directed Cd2+ coordination; a route for healing DNA damage. Short oligomers are G‐specifically thiolated through a modified on‐column protocol without the need for costly thioguanosine phosphoramidites. Addition of Cd2+ ions to a duplex containing a highly disrupted tG central mismatch sequence, 3′‐A6tG4T6‐5′, suggests a (tG)8Cd2 central coordination regime, resulting in increased base stacking and duplex stability. Equilibrium molecular dynamic calculations support the hypothesis of metal‐induced healing of the thiolated duplex. The 2 nm displacement of the central tG mismatched region is dramatically reduced after the addition of a chemical stimuli, Cd2+ ions, returning to a minimized fluctuational state comparable to the unmodified fully complementary oligomer.  相似文献   
999.
The critical growth factor density required to support neural lineage generation from mouse embryonic stem cells is assessed by constructing a surface density gradient of immobilized nerve growth factor (NGF) from a plasma polymer film base. A chemical surface gradient varying from high hydroxyl group density to high aldehyde group density is prepared through diffusion‐controlled plasma polymerization of two monomers (ethanol and propionaldehyde) under a moving mask. NGF density gradients are then produced by reductive amination with the aldehyde groups on the plasma polymer surface. Mouse embryoid body derived (mEB) cell differentiation on the gradient surface is evaluated by immunofluorescence staining against Nestin. mEB cell density and the percentage of Nestin‐positive cells increase with increasing NGF density up to a critical value corresponding to 52.9 ng cm?2, above which cell attachment and differentiation do not increase further. This gradient‐based screening approach allows the growth factor surface densities to be optimized for biomaterials intended for cell differentiation or expansion, which is highly relevant to creating efficient manufacture processes for cell therapies.  相似文献   
1000.
Ultrasound‐assisted extraction (UAE) and conventional solid–liquid extraction were applied to extract total antioxidants from two rapeseed varieties. The antioxidant capacities (AC) of winter and spring rapeseed cultivars were determined by four different analytical methods: ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), 2,2′‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS). The average AC of the studied rapeseed cultivars ranged between 4.21–10.03 mmol Trolox (TE)/100 g, 7.82–10.61 mmol TE/100 g, 8.11–51.59 mmol TE/100 g, 22.48–43.13 mmol TE/100 g for FRAP, CUPRAC, DPPH and ABTS methods, respectively. There are positive correlations between total phenolics (TPC = 804–1625 mg sinapic acid (SA)/100 g) and AC of the studied rapeseed extracts (r = 0.2650–0.9931). Results of the principal component analysis (PCA) indicate that there are differences between the total amounts of antioxidants in rapeseed samples extracted by different extraction techniques. Rapeseed extracts obtained after 18 min of ultrasonication revealed the highest content of total antioxidants. The UAE is a very useful, efficient and rapid technique of oilseed samples preparation for determination of AC by different analytical methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号