首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5812篇
  免费   326篇
  国内免费   43篇
电工技术   75篇
综合类   20篇
化学工业   1640篇
金属工艺   125篇
机械仪表   220篇
建筑科学   155篇
矿业工程   4篇
能源动力   375篇
轻工业   560篇
水利工程   84篇
石油天然气   36篇
无线电   551篇
一般工业技术   1066篇
冶金工业   276篇
原子能技术   84篇
自动化技术   910篇
  2024年   40篇
  2023年   113篇
  2022年   324篇
  2021年   398篇
  2020年   300篇
  2019年   327篇
  2018年   360篇
  2017年   296篇
  2016年   324篇
  2015年   194篇
  2014年   323篇
  2013年   532篇
  2012年   305篇
  2011年   312篇
  2010年   277篇
  2009年   245篇
  2008年   166篇
  2007年   145篇
  2006年   132篇
  2005年   95篇
  2004年   73篇
  2003年   71篇
  2002年   55篇
  2001年   42篇
  2000年   36篇
  1999年   37篇
  1998年   69篇
  1997年   59篇
  1996年   42篇
  1995年   53篇
  1994年   24篇
  1993年   34篇
  1992年   30篇
  1991年   25篇
  1990年   24篇
  1989年   22篇
  1988年   15篇
  1987年   30篇
  1986年   30篇
  1985年   22篇
  1984年   30篇
  1983年   26篇
  1982年   16篇
  1981年   8篇
  1980年   14篇
  1979年   13篇
  1978年   12篇
  1977年   11篇
  1976年   14篇
  1975年   8篇
排序方式: 共有6181条查询结果,搜索用时 31 毫秒
21.
Al-TiB2 master alloys have received much attention in recent years owing to their potential as efficient grain refiners for aluminum foundry alloys. In this study, the process of production of master alloys was investigated to develop a low cost method, namely, slag-metal reaction. This method can be used to fabricate Al-TiB2 master alloy in situ from the TiO2-H3BO3-Na3AlF6 and Al system. Since the price of the raw materials is low and the technology is simple, the processing technique appears to reduce the cost of the master alloy. Because of exothermic reactions, not much energy is needed to melt materials. In this process, Titanium diboride particles were formed in situ through the reactions of TiO2, H3BO3 and Na3AlF6. Results showed that when the aluminum melted, the condensed TiB2 particles that formed in situ were spherical with an average diameter of 1 μm. Furthermore, these TiB2 particles were distributed uniformly through the master alloy.  相似文献   
22.
Structural and optoelectronic properties of BaThO3 cubic perovskite are calculated using all electrons full potential linearized augmented plane wave (FP-LAPW) method. Wide and direct band gap, 5.7 eV, of the compound predicts that it can be effectively used in UV based optoelectronic devices. Different characteristic peaks in the wide UV range emerges mainly due to the transition of electrons between valance band state O-p and conduction band states Ba-d, Ba-f, Th-f and Th-d.  相似文献   
23.
In this paper, efficient multidimensional (M-D) vector radix (VR) decimation-in-frequency and decimation-in-time fast Hartley transform (FHT) algorithms are derived for computing the discrete Hartley transform (DHT) of any dimension using an appropriate index mapping and the Kronecker product. The proposed algorithms are more effective and highly suitable for hardware and software implementations compared to all existing M-D FHT algorithms that are derived for the computation of the DHT of any dimension. The butterflies of the proposed algorithms are based on simple closed-form expressions that allow easy implementations of these algorithms for any dimension. In addition, the proposed algorithms possess properties such as high regularity, simplicity and in-place computation that are highly desirable for software and hardware implementations, especially for the M-D applications. A close relationship between the M-D VR complex-valued fast Fourier transform algorithms and the proposed M-D VR FHT algorithms is established. This type of relationship is of great significance for software and hardware implementations of the algorithms, since it is shown that because of this relationship and the fact that the DHT is an alternative to the discrete Fourier transform (DFT) for real data, a single module with a little or no modification can be used to carry out the forward and inverse M-D DFTs for real- or complex-valued data and M-D DHTs. Thus, the same module (with a little or no modification) can be used to cover all domains of applications that involve the DFTs or DHTs.  相似文献   
24.
Traffic load balancing in data centers is an important requirement. Traffic dynamics and possibilities of changes in the topology (e.g., failures and asymmetries) make load balancing a challenging task. Existing end‐host–based schemes either employ the predominantly used ECN or combine it with RTT to get congestion information of paths. Both congestion signals, ECN and RTT, have limitations; ECN only tells whether the queue length is above or below a threshold value but does not inform about the extent of congestion; similarly, RTT in data center networks is on the scale of up to few hundreds of microseconds, and current data center operating systems lack fine‐grained microsecond‐level timers. Therefore, there is a need of a new congestion signal which should give accurate information of congestion along the path. Furthermore, in end‐host–based schemes, detecting asymmetries in the topology is challenging due to the inability to accurately measure RTT on the scale of microseconds. This paper presents QLLB, an end‐host–based, queue length–based load balancing scheme. QLLB employs a new queue length–based congestion signal that gives an exact measure of congestion along the paths. Furthermore, QLLB uses relative‐RTT to detect asymmetries in the topology. QLLB is implemented in ns‐3 and compared with ECMP, CONGA, and Hermes. The results show that QLLB significantly improves performance of short flows over the other schemes and performs within acceptable level, of CONGA and Hermes, for long flows. In addition, QLLB effectively detects asymmetric paths and performs better than Hermes under high loads.  相似文献   
25.
In classical public‐key infrastructure (PKI), the certificate authorities (CAs) are fully trusted, and the security of the PKI relies on the trustworthiness of the CAs. However, recent failures and compromises of CAs showed that if a CA is corrupted, fake certificates may be issued, and the security of clients will be at risk. As emerging solutions, blockchain‐ and log‐based PKI proposals potentially solved the shortcomings of the PKI, in particular, eliminating the weakest link security and providing a rapid remedy to CAs' problems. Nevertheless, log‐based PKIs are still exposed to split‐world attacks if the attacker is capable of presenting two distinct signed versions of the log to the targeted victim(s), while the blockchain‐based PKIs have scaling and high‐cost issues to be overcome. To address these problems, this paper presents a secure and accountable transport layer security (TLS) certificate management (SCM), which is a next‐generation PKI framework. It combines the two emerging architectures, introducing novel mechanisms, and makes CAs and log servers accountable to domain owners. In SCM, CA‐signed domain certificates are stored in log servers, while the management of CAs and log servers is handed over to a group of domain owners, which is conducted on the blockchain platform. Different from existing blockchain‐based PKI proposals, SCM decreases the storage cost of blockchain from several hundreds of GB to only hundreds of megabytes. Finally, we analyze the security and performance of SCM and compare SCM with previous blockchain‐ and log‐based PKI schemes.  相似文献   
26.
27.
Telecommunication Systems - Interference is the main source of capacity limitation in wireless networks. In some medium access technologies in cellular networks, such as OFDMA, the allocation of...  相似文献   
28.
This article presents a modeling and simulation method for transient thermal analyses of integrated circuits(ICs) using the original and voltage-in-current(VinC) latency insertion method(LIM). LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the sol...  相似文献   
29.
In heterogeneous access network, Multiple-Input Multiple-Output (MIMO) radio-over-fiber (RoF) system is an efficient approach for multiple signal transmission with low cost and complexity. The performance of RoF fronthaul system in MIMO system will be varied with different nonlinear effects. By adjusting various transmission parameters, such as the input signal power or the laser bias current, the nonlinear impacts produced by the RoF system can be reduced. In this paper, a novel algorithm Improved Aquila Optimization (IAO) is proposed to optimize transmission circumstances of MIMO RoF system. It determines the appropriate bias current for both lasers and Radio Frequency (RF) signal power in a short period. The input signals are wavelength multiplexed with Intensity Modulation and Direct Detection (IM/DD) applied. The carrier as well as transmission frequency is governed by the MIMO-Long-Term Evolution (LTE) standard. The proposed system is implemented in MATLAB, and the performance is evaluated. The experimental results show that fast convergence and trade-off between noise and nonlinearity are obtained with varying bandwidth. In the experimental scenario, the maximum Error Vector Magnitude (EVM) of 1.88, 3.14, and signal-to-noise ratio (SNR) of 3.204, and 2.698 was attained for both quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) modulation. [Correction added on 24 April 2023, after first online publication: the SNR values were corrected in the preceding sentence.] For 100 iterations, the processing time was reduced to 0.137 s. When compared with the conventional state-of-the-art approaches, the accuracy and computational complexity of the proposed approach are improved.  相似文献   
30.
The evolved packet core (EPC) network is the mobile network standardized by the 3rd Generation Partnership Project and represents the recent evolution of mobile networks providing high‐speed data rates and on‐demand connectivity services. Software‐defined networking (SDN) is recently gaining momentum in network research as a new generation networking technique. An SDN‐based EPC is expected to introduce gains to the EPC control plane architecture in terms of simplified, and perhaps even software‐based, vendor independent infrastructure nodes. In this paper, we propose a novel SDN‐based EPC architecture along with the protocol‐level detailed implementation and provide a mechanism for identifying information fields exchanged between SDN‐EPC entities that maintains correct functionality with minimal impact on the conventional design. Furthermore, we present the first comprehensive network performance evaluation for the SDN‐based EPC versus the conventional EPC and provide a comparative analysis of 2 networks performances identifying potential bottlenecks and performance issues. The evaluation focuses on 2 network control operations, namely, the S1‐handover and registration operations, taking into account several factors, and assessing performance metrics such as end‐to‐end delay (E2ED) for completion of the respective control operation, and EPC nodes utilization figures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号