We investigated the heat resistance of an eight-strain cocktail of Salmonella serovars in chicken supplemented with trans cinnamaldehyde (0 to 1.0%, wt/wt) and carvacrol (0 to 1.0%, wt/wt). Inoculated meat was packaged in bags that were completely immersed in a circulating water bath and held at 55 to 71°C for predetermined lengths of time. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values in chicken, determined by linear regression, were 17.45, 2.89, 0.75, and 0.29 min at 55, 60, 65, and 71°C, respectively (z = 9.02°C). Using a survival model for nonlinear survival curves, D-values in chicken ranged from 13.52 min (D(1), major population) and 51.99 min (D(2), heat-resistant subpopulation) at 55°C to 0.15 min (D(1)) and 1.49 min (D(2)) at 71°C. When the Salmonella cocktail was in chicken supplemented with 0.1 to 1.0% trans-cinnamaldehyde or carvacrol, D-values calculated by both approaches were consistently less at all temperatures. This observation suggests that the addition of natural antimicrobials to chicken renders Salmonella serovars more sensitive to the lethal effect of heat. Thermal death times from this study will be beneficial to the food industry in designing hazard analysis and critical control point plans to effectively eliminate Salmonella contamination in chicken products used in this study. 相似文献
This paper presents the comparison of a three dimensional Computational Fluid Dynamics (CFD) analysis with empirical performance data of a 0.6 m impulse turbine with fixed guide vanes used for wave energy power conversion. Pro-Engineer, Gambit and Fluent 6 were used to create a 3-D model of the turbine. A hybrid meshing scheme was used with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. The turbine has a hub-to-tip ratio of 0.6 and results were obtained over a wide range of flow coefficients. The model yielded a maximum efficiency of approximately 54% as compared to a maximum efficiency of around 49% from experiment. A degree of insight into flow behaviour, not possible with experiment, was obtained. 相似文献
A brittle coating stress analysis technique applicable to orthotropic materials has been developed. The technique has been applied to a unidirectional glass fibre reinforced epoxy. Its behaviour has been studied under uniaxial and biaxial stress fields using cantilever beam specimens and circular disc specimens under diametral compression. Fibre orientation in the specimens has been varied. In each case it has been observed that the cracks represent the direction of principal strains in the specimen material and not the direction of principal stresses. It is also observed that the threshold strain in the coating is not affected by the biaxiality of the stresses in the coating. 相似文献
An extensive study on the turbulent drag reduction caused by the various mixtures of polyacrylamide, purified guargum, xanthangum, and their graft copolymers has been conducted at low concentrations and Re = 14,000 using a turbulent flow rheometer. It has been found in most of the cases that the drag reduction caused by mixtures shows a positive deviation from the linearly additive straight line. This effect is more prominent when the drag reduction caused by both the constituents differ appreciably. In most of the cases, the drag reduction caused by the mixtures is higher than the DR caused by either of the constituent polymers; however, the drag reduction caused by the mixture is less than the sum of the drag reduction caused by both the constituents at their respective concentration in the mixture. It has also been noticed that there is no evidence of synergism in these mixtures at low concentrations. 相似文献
Emotion is considered a physiological state that appears whenever a transformation is observed by an individual in their environment or body. While studying the literature, it has been observed that combining the electrical activity of the brain, along with other physiological signals for the accurate analysis of human emotions is yet to be explored in greater depth. On the basis of physiological signals, this work has proposed a model using machine learning approaches for the calibration of music mood and human emotion. The proposed model consists of three phases (a) prediction of the mood of the song based on audio signals, (b) prediction of the emotion of the human-based on physiological signals using EEG, GSR, ECG, Pulse Detector, and finally, (c) the mapping has been done between the music mood and the human emotion and classifies them in real-time. Extensive experimentations have been conducted on the different music mood datasets and human emotion for influential feature extraction, training, testing and performance evaluation. An effort has been made to observe and measure the human emotions up to a certain degree of accuracy and efficiency by recording a person’s bio- signals in response to music. Further, to test the applicability of the proposed work, playlists are generated based on the user’s real-time emotion determined using features generated from different physiological sensors and mood depicted by musical excerpts. This work could prove to be helpful for improving mental and physical health by scientifically analyzing the physiological signals.
This paper is concerned with the detection and characterization of hidden defects in advanced structures before they grow to a critical size. A novel method is developed using a combination of vibration and wave propagation data to determine the location and degree of damage in structural components requiring minimal operator intervention. The structural component is to be instrumented with an array of actuators and sensors to excite and record its dynamic response. A damage index, calculated from the measured dynamic response of the structure in a reference state (baseline) and the current state, is introduced as a determinant of structural damage. The index is a relative measure comparing the two states of the structure under the same ambient conditions. The indices are used to identify damages in the forms of delaminations and holes in composite plates for different arrangements of the source and the receivers. The potential applications of the approach in developing health monitoring systems in defects-critical structures are discussed. 相似文献
The microstructure of laser beam weld-metal of an yttrium doped directionally solidified alloy IC 6A, with chemical composition Ni–16Al–8.5Mo–0.12B–0.05C–0.03Y (at.%) was studied. The dendritic microsegregation observed within the fusion zone indicated that dendrite cores were slightly depleted in molybdenum and aluminum and the interdendritic regions were also considerably enriched in yttrium. Severe cracking in the weld-metal was observed and was found to be closely associated with interdendritic eutectic-type microconstituents identified as consisting of γ, γ′ and Ni–Mo phases. An yttrium-rich phase (Ni3Y) was observed in some interdendritic regions containing the eutectic γ, γ′ and Ni–Mo products. Their formation was discussed in relation to plausible microsegregation induced alteration of primary solidification path during cooling from welding temperatures. 相似文献