首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2159篇
  免费   40篇
  国内免费   11篇
电工技术   92篇
综合类   1篇
化学工业   443篇
金属工艺   77篇
机械仪表   52篇
建筑科学   34篇
能源动力   86篇
轻工业   130篇
水利工程   9篇
无线电   225篇
一般工业技术   443篇
冶金工业   430篇
原子能技术   52篇
自动化技术   136篇
  2023年   9篇
  2022年   22篇
  2021年   30篇
  2020年   11篇
  2019年   26篇
  2018年   25篇
  2017年   22篇
  2016年   33篇
  2015年   23篇
  2014年   43篇
  2013年   101篇
  2012年   69篇
  2011年   107篇
  2010年   77篇
  2009年   102篇
  2008年   87篇
  2007年   81篇
  2006年   67篇
  2005年   66篇
  2004年   55篇
  2003年   64篇
  2002年   57篇
  2001年   46篇
  2000年   47篇
  1999年   50篇
  1998年   184篇
  1997年   109篇
  1996年   66篇
  1995年   55篇
  1994年   52篇
  1993年   43篇
  1992年   21篇
  1991年   31篇
  1990年   23篇
  1989年   30篇
  1988年   23篇
  1987年   16篇
  1986年   27篇
  1985年   30篇
  1984年   17篇
  1983年   13篇
  1982年   19篇
  1981年   14篇
  1980年   19篇
  1979年   12篇
  1978年   6篇
  1977年   17篇
  1976年   34篇
  1975年   8篇
  1973年   8篇
排序方式: 共有2210条查询结果,搜索用时 15 毫秒
91.
Contact damage in materials is critical in engineering applications because it influences mechanical resistance, such as wear, erosion, and impact failure. Indentation tests were performed using a tungsten carbide ball indenter (Hertzian contact) on the surfaces of glass–ceramics containing hexagonal CaAl2Si2O8 or mica crystals (fluorophlogopite), both of which have a layered structure. The stress–strain relation and the permanent deformation on the surface, as well as the observation of the microcrack zone by X-ray computed tomography using synchrotron radiation, revealed that the glass–ceramic with hexagonal CaAl2Si2O8 showed ductility similar to the quasi-plastic behavior previously observed in the mica glass–ceramic. The yield stresses of the glass–ceramics were estimated from the stress deviating from the stress–strain relation assuming complete elastic response between the ball and the sample. The ratio of the yield stress to Young modulus (Y/E) of the glass–ceramic with hexagonal CaAl2Si2O8 was determined to be higher than that of the mica glass–ceramic.  相似文献   
92.
The binary phase behavior of SOS (1,3-distearoyl-2-oleoyl-sn-glycerol) and SLS (1,3-distearoyl-2-linoleoyl-sn-glycerol) was examined by using DSC and conventional and synchrotron radiation X-ray diffraction. The solid-solution phases were observed in the metastable α and γ forms in all concentration ranges. Results indicated that the miscible γ form did not transform to the β′ form when the mixtures were subjected to simple cooling from a high-temperature liquid to a low-temperature solid phase. However, and α-melt-mediated transformation into β′ and β2 resulted in the formation of immiscible phases in concentration ranges of SLS below 30%. By contrast, at SLS concentration ranges above 30%, the α-melt-mediated transformation caused crystallization of only the γ form, and β′ and β2 crystals did not appear. These results show that the specific interactions between SOS and SLS are operative in the phase behavior of the mixture states of SOS and SLS.  相似文献   
93.
The three-dimensional morphology of polyethylene single crystals grown from dilute solution has been examined by atomic force microscopy. Single crystals were deposited on a soft ground of aqueous solution of poly(vinyl alcohol) (PVA) to avoid the collapse of thin lamellar crystals with thickness of 10 nm. The observation of single crystals on dried PVA clarifies the morphology of a chair type crystal as well as well-known hollow pyramidal type. It has been confirmed that the screw dislocations in the chair type follow a selection rule of the handedness in a manner to relieve the distortion in the chair type.  相似文献   
94.
Glasses doped with well‐controlled Eu3+ and Eu2+ ions have attracted considerable interest due to the possibility of tuning the wavelength range of the emitted light from violet to red by using their 5D07Fj and 5d–4f electron transitions. Glasses were prepared to dope Eu3+ ions in a Na2O–Al2O3–SiO2 system, and the changes in the valence state of Eu3+ ions and the glass structure surrounding the Eu atoms during heating under H2 atmosphere were investigated using fluorescence spectroscopy, X‐ray absorption fine‐structure spectroscopy, and 27Al magic‐angle spinning solid‐state nuclear magnetic resonance spectroscopy. The reduction behavior of Eu3+ ions was dependent on the Al/Na molar ratio of the glass. For Al/Na < 1, the Al3+ ions formed the AlO4 network structure accompanied by the Na+ ions as charge compensators; the Eu3+ ions occupied the interstitial positions in the SiO4 network structure and were not reduced even under heating in H2 gas. On the other hand, in the glasses containing Al2O3 with the Al/Na ratio exceeding unity, the Eu3+ ions commenced to be coordinated by the AlO4 units in addition to the SiO4 network structure. When heated in H2 gas, H2 gas molecules reacted with the AlO4 units surrounding Eu3+ ions to form AlO6 units terminated with OH bonds, and reduced Eu3+ ions to Eu2+ via the extracted electrons.  相似文献   
95.
Three types of polycarbosilane-derived SiC fibers—Nicalon, Hi-Nicalon, and Hi-Nicalon S—were exposed at temperatures of 1573–1773 K under a reduced pressure of 1.3 Pa. The thermal stability of the fibers was investigated through examinations of the gas evolution, grain growth, specific resistivity, fiber morphology, and tensile strength. The thermal decomposition of the silicon oxycarbide phase began at 1523 K; then, active oxidation of the β-SiC crystallites occurred at >1673 K. The active oxidation caused serious damage to the fiber structure, which resulted in significant degradation of the fiber strength. Hi-Nicalon had a tensile strength of ∼0.5 GPa after exposure at 1773 K, although Nicalon and Hi-Nicalon S fibers completely lost their strength, even after exposure at 1673 K. Hi-Nicalon fiber had relatively good thermal stability under reduced pressure.  相似文献   
96.
Fixation of nitrogen oxides (NOx) in air onto granular activated carbon impregnated with chemicals was attempted to improve removal efficiency of NOx by activated carbon adsorption. Nitric oxide (NO) and nitrogen dioxide (NO2), were tried to remove by a flow test. Fixed-bed adsorption breakthrough curves were obtained when some kinds of carbon were used. The amount adsorbed of NO2 changed with the amount and kinds of metallic salts impregnated. Chemicals-impregnated carbons were prepared from a commercial activated carbon. Among obtained carbons, the one which showed the highest selectivity for NOx was chosen, and its performance with the change in humidity was determined. Removal mechanism of NO2 was estimated, and the carbon impregnated with potassium hydroxide was found to be superior to any other carbon tested. The amount of the adsorbed NO and that produced by the reduction of NO2 were determined from the breakthrough curves.  相似文献   
97.
Continuously graded MoSi2-ZrO2(2Y) materials with high density (97.5% of theoretical) have been fabricated by uniaxial wet-molding, followed by hot pressing (1000°C/1 h/30 MPa) and hot isostatic pressing (1400°C/2 h/196 MPa). Their composition profiles are greatly influenced by the viscosity of mixed solutions of glycerin and ethanol used as a dispersion medium; a linear compositional gradient from MoSi2/ZrO2(2Y) 70/30 to 20/80 mol% is obtained from the solution (50/50 vol%) with a viscosity of 20 mPa s. Vickers hardness (Hv) and fracture toughness (KIC) increase from 9.7 to 12.4 GPa and from 5.1 to 12.5 MPa m1/2, respectively, with increasing ZrO2(2Y) composition.  相似文献   
98.
A novel method to simultaneously simulate particle motion and its breakage in a dry impact pulverizer was developed. The motion of particles in the pulverizer was calculated using a discrete phase model (DPM)‐computational fluid dynamics (CFD) coupling model. When the particle impacts against a vessel wall, impact stress acting on the particle is calculated from Hertz's theory as a function of the impact velocity. At the same time, the particle strength as a function of the particle size is calculated from Griffith's theory. If the impact stress is larger than the particle strength, the particle is broken and replaced with smaller fragments. The size distribution of the fragments is obtained from a breakage function proposed. The motion of the fragments is calculated again by using the DPM‐CFD coupling model. By repeating the above calculations over the whole particles, the grinding phenomenon can be simulated. The calculated results showed good agreement with the experimental one, and validity of the proposed method was confirmed. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3601–3611, 2013  相似文献   
99.
New rotary molecular machines (1 and 2) were synthetically constructed from two distinct porphyrin-based rotors, a cerium(IV) bis(porphyrinate)s double-decker (CeDD) and a porphyrinatorhodium(III)-based rotor. These rotors are adjacently mounted on rotational axes aligned to near vertical as resembling the bevel-gear-shaped structure. Structural study using NMR analysis reveals that these distinct rotors are connected through a coordination bond between rhodium(III) and a pyridyl group. At temperature from 193 to 393 K, each rotor represents rotational motion driven by heat fluctuation without decomposition into the corresponding precursors in dichloromethane-d 2 and tetrachloroethane-d 4. Importantly, the mechanical interaction between the teeth of these rotors is strongly dependent on the central metal atom in a DD rotor and the teeth structure in a porphyrinatorhodium(III)-based rotor. Understanding such relationship between the chemical structures and mechanical interaction is of importance for generating cooperative motion in the hybrid machinery system.  相似文献   
100.
The relationship between the postcuring conditions and fracture toughness on three silica particulate‐filled epoxy composites was investigated. The glass transition temperature, Tg, and the fragility parameter, m, derived from the thermo‐viscoelasticity, were used to characterize the composites, which were postcured under various conditions. The glass transition temperature and fragility both depended on both of the curing conditions and the volume fraction of silica particles. The glass transition temperature increased with the postcuring time and temperature, while the fragility generally decreased as the volume fraction increased. There was no direct correlation between the glass transition temperature and fragility. The fracture toughness depended on both the glass transition temperature and fragility. The composites with a high glass transition temperature and low fragility had high fracture toughness. These results indicate that the glass transition temperature and fragility are useful parameters for estimating the fracture toughness of the silica particulate‐filled epoxy composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2261–2265, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号