首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   40篇
  国内免费   1篇
电工技术   89篇
综合类   2篇
化学工业   306篇
金属工艺   26篇
机械仪表   21篇
建筑科学   21篇
矿业工程   1篇
能源动力   49篇
轻工业   87篇
水利工程   1篇
无线电   36篇
一般工业技术   168篇
冶金工业   91篇
原子能技术   46篇
自动化技术   94篇
  2024年   2篇
  2023年   8篇
  2022年   15篇
  2021年   33篇
  2020年   24篇
  2019年   15篇
  2018年   22篇
  2017年   23篇
  2016年   34篇
  2015年   27篇
  2014年   43篇
  2013年   50篇
  2012年   46篇
  2011年   78篇
  2010年   45篇
  2009年   58篇
  2008年   44篇
  2007年   39篇
  2006年   45篇
  2005年   38篇
  2004年   29篇
  2003年   29篇
  2002年   31篇
  2001年   21篇
  2000年   15篇
  1999年   17篇
  1998年   40篇
  1997年   34篇
  1996年   10篇
  1995年   14篇
  1994年   15篇
  1993年   14篇
  1992年   11篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
排序方式: 共有1038条查询结果,搜索用时 15 毫秒
51.
Charged polypeptides containing sulfonate groups were prepared by transesterification of poly(γ‐methyl L ‐glutamate) with isethionic acid. The coil–helix transition of the sulfonated polypeptides was investigated in aqueous alcohols. Marked counter‐ion specificity was observed for helix formation: Li+ < Na+ < Cs+ ≦ Rb+ ≦ K+; this was different to that for poly(L ‐glutamate) (PLG): Cs+ ? K+ < Li+ < Na+. Specific helix stabilization by counter‐ion mixing, which has been found for the PLG system, was not observed for the sulfonated polypeptides. The counter‐ion‐ and solvent‐specific helix formation is discussed and compared with that in PLG. © 2001 Society of Chemical Industry  相似文献   
52.
The dependence of silicon oxycarbides' chemical composition and molecular structure on their reaction conditions was tested by varying the atmosphere under which pyrolysis was performed. To obtain the silicon oxycarbides, densely cross‐linked silicone resin particles with an averaged diameter of 2 μm were pyrolyzed in various atmospheres of H2, Ar, and CO2, in the temperature range 700°C–1100°C. The residual mass of resin after pyrolysis was almost constant at 700°C, although their apparent colors varied distinctly. The sample obtained from the H2 atmosphere was white, whereas that obtained from the CO2 atmosphere was dark brown. Fourier‐transform infrared (FT‐IR) spectra of the residues suggested that the Si–O–Si network evolution was accelerated in the CO2 atmosphere. Beyond 800°C, the chemical compositions of the compounds obtained from a H2 atmosphere increasingly approached near‐stoichiometric SiO2xSiC composition with increasing the pyrolysis temperature. Compounds from a CO2 atmosphere approached a composition of SiO2xC with no free SiC as the pyrolysis temperature increased. In the products from an Ar atmosphere, SiO2xSiC–yC compositions were typically obtained. The observed effects of the pyrolysis atmosphere on the resulting chemical compositions were analyzed in terms of thermodynamic calculations. Electron spin resonance (ESR) spectra revealed broad and intense signals from products obtained from either Ar or CO2. Estimating from the signal intensity, the residual spin concentrations were in the range 1018–1019 g?1. Meanwhile, the spectra from the samples obtained in H2 showed weak and sharp signals with estimated spin concentrations ranging from 1016–1017 g?1. This signal attenuation may have been due to the hydrogen capping of dangling bond formed during pyrolysis.  相似文献   
53.
The intrinsic birefringence Δn0 and photoelastic coefficient C of poly(methyl methacrylate), poly(2,2,2‐trifluroethyl methacrylate), poly(phenyl methacrylate), and poly(2,2,3,3,3‐pentafluorophenyl methacrylate) were determined. We categorized these methacrylate polymers into four birefringence‐types, even though their molecular structures differed only by the substituents on the side chains. Based on the results of Δn0 and C, novel polymers that exhibit neither orientational nor photoelastic birefringence, i.e., zero–zero‐birefringence polymers, were designed and synthesized by quaternary copolymerization system. Furthermore, we confirmed that the mechanisms of orientational birefringence and photoelastic birefringence generation were different in these methacrylate polymers. The conformation of the repeat unit of the polymers was nearly constant during the generation of orientational birefringence. In contrast, the conformation of the repeat unit of the polymers changed during the generation of photoelastic birefringence in the glassy state. These findings demonstrated the reasonability of evaluating orientational and photoelastic birefringence separately, as well as the adequacy of the classification of polymers into four birefringence‐types. Given these results and the fact that zero–zero‐birefringence polymers could be prepared successfully by four‐birefringence type monomers, we demonstrated the reasonability of the method for designing the zero–zero‐birefringence polymers. POLYM. ENG. SCI., 55:1330–1338, 2015. © 2015 Society of Plastics Engineers  相似文献   
54.
Abstract

A method for low-temperature drying with high drying rate was developed for heat-sensitive foods and agricultural products. A freezing pretreatment was combined with fluidized bed drying under reduced pressure. Cylindrical carrot samples were frozen and then placed without thawing in a fluidized bed of hygroscopic porous silica gel particles that adsorbed water from the sample during the drying process. The effects of the freezing pretreatment and hygroscopicity of fluidizing particles on the drying characteristics of carrots were examined. A higher drying rate was achieved when carrots samples were subjected to freezing pretreatment than without it. At 12?kPa, the volume change was smaller in carrots subjected to freezing pretreatment than in untreated samples. A larger amount of water was absorbed during rehydration by carrots dried at 12?kPa than at 101?kPa within 120?min. The properties of dried carrots were affected not only by freezing pretreatment but also by the pressure applied during the drying process.  相似文献   
55.
This study has been carried out on solidification of a model cream using palm oil as a sole fat source. It was found that the addition of 1‐palmitoylglycerol to palm oil promoted the solidification of the model cream while the addition of 1‐oleoylglycerol had no such effect. Solid fat content of palm oil in the cream with 1‐palmitoylglycerol was found to be lower than those of palm oil and palm oil with 1‐oleoylglycerol after cooling from 60 to 5 °C. Crystallization behaviors of bulk palm oil and mixture of 1, 3‐dipalmitoyl‐ 2‐oleoyl‐glycerol (POP) and 1‐palmitoyl‐2, 3‐dioleoyl‐glycerol (POO) were then studied in the presence of monoacylglycerols. Formation of granular crystals was observed for palm oil and POP/POO mixture in the presence of 1‐palmitoylglycerol. HPLC of the granular crystals revealed that agglomeration of higher melting point triacylglycerols (TAGs) around 1‐palmitolyglycerol took place, which promoted the formation of granular crystals. It was suggested that the agglomeration of higher melting point TAGs around 1‐palmitoylglycerol which was preferentially adsorbed at the oil‐water interface of oil droplets in the model cream led to destabilization of oil‐in‐water emulsion and the solidification of the model cream. At the same time, it was suggested that the fatty acid moiety of emulsifiers played an important role in the agglomeration of TAGs and stabilization of o/w emulsions.  相似文献   
56.
In order to develop a method for converting raw starch into ethanol efficiently, direct fermentation of ozonized raw starch using a recombinant yeast was investigated. Ozonolysis was carried out as a pretreatment to convert raw starch into ethanol rapidly and efficiently, and then the effect of the ozone degradation conditions on the degree of polymerization and the amount of amylose in a raw starch was determined. Since the degree of polymerization was low and the amount of amylose was high, raw starch treated with an ozone concentration of 40 gm?3 and an ozonation time of 30 min was the material chosen for alcohol fermentation. Though the recombinant yeast could not convert the untreated raw starch, it converted the soluble starch and the ozonized raw starch at a comparatively high yield into ethanol. About 56% of the ozonized raw starch decomposed, and the ethanol concentration obtained from the ozonized raw starch was markedly greater than that obtained from untreated raw starch. The dynamic behavior of cell growth, substrate degradation, and ethanol production was examined in a continuous culture under various dilution rates, and the optimal dilution rate, ie 0.15 h?1, was determined for maximizing the ethanol productivity (amount of ethanol produced per unit time). © 2002 Society of Chemical Industry  相似文献   
57.
58.
Poly(L-lactic acid) (PLLA) microfibers were obtained by a carbon dioxide (CO2) laser-thinning method. A laser-thinning apparatus used to continuously prepare microfibers was developed in our laboratory; it consisted of spools supplying and winding the fibers, a continuous-wave CO2-laser emitter, a system supplying the fibers, and a traverse. The laser-thinning apparatus produced PLLA microfibers in the range of 100-800 m min−1. The diameter of the microfibers decreased as the winding speed increased, and the birefringence increased as the winding speed increased. When microfibers, obtained through the laser irradiation (at a laser power of 8.0 W cm−2) of the original fiber supplied at 0.4 m min−1, were wound at 800 m min−1, they had a diameter of 1.37 μm and a birefringence of 24.1×10−3. The draw ratio calculated from the supplying and winding speeds was 2000×. The degree of crystal orientation increased with increasing the winding speed. Scanning electron microscopy showed that the microfibers obtained with the laser-thinning apparatus had smooth surfaces not roughened by laser ablation that were uniform in diameter. The PLLA microfiber, which was obtained under an optimum condition, had a Young's modulus of 5.8 GPa and tensile strength of 0.75 GPa.  相似文献   
59.
60.
A novel fabrication route to make macroporous silicon carbide (SiC) has been proposed in this study. The route is composed of the following two steps: the fabrication of porous α‐SiC/novolac‐type phenolic composite using hexamethylenetetramine (HMT) as a curing/blowing agent for the novolac monomer and a conventional reaction‐bonded (RB) sintering of the composite. The α‐SiC/novolac‐type phenolic composite was carbonized at 800°C for 2 h in N2 gas and then reacted with the molten silicon at 1450°C for 30 min under vacuum, resulting in the macroporous RB‐SiC with an open porosity of 48% and relatively large pore size of ~110 μm. The compressive strength of the macroporous RB‐SiC was 113 MPa, which is relatively high compared to those reported for macroporous SiC of equivalent porosities and pore sizes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号