首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3040篇
  免费   69篇
  国内免费   19篇
电工技术   184篇
综合类   5篇
化学工业   1018篇
金属工艺   96篇
机械仪表   104篇
建筑科学   96篇
能源动力   140篇
轻工业   194篇
水利工程   6篇
石油天然气   3篇
无线电   149篇
一般工业技术   693篇
冶金工业   90篇
原子能技术   117篇
自动化技术   233篇
  2023年   17篇
  2022年   45篇
  2021年   50篇
  2020年   21篇
  2019年   32篇
  2018年   51篇
  2017年   45篇
  2016年   59篇
  2015年   48篇
  2014年   70篇
  2013年   164篇
  2012年   104篇
  2011年   198篇
  2010年   138篇
  2009年   146篇
  2008年   169篇
  2007年   113篇
  2006年   135篇
  2005年   116篇
  2004年   83篇
  2003年   116篇
  2002年   82篇
  2001年   55篇
  2000年   67篇
  1999年   54篇
  1998年   75篇
  1997年   79篇
  1996年   67篇
  1995年   42篇
  1994年   33篇
  1993年   45篇
  1992年   30篇
  1991年   29篇
  1990年   32篇
  1989年   45篇
  1988年   31篇
  1987年   34篇
  1986年   53篇
  1985年   45篇
  1984年   56篇
  1983年   49篇
  1982年   32篇
  1981年   24篇
  1980年   19篇
  1979年   27篇
  1978年   19篇
  1977年   18篇
  1976年   11篇
  1974年   14篇
  1973年   10篇
排序方式: 共有3128条查询结果,搜索用时 0 毫秒
991.
In the present study, Aspergillus oryzae-inoculated koji inhibited lipid oxidation in fermented fish paste rich in polyunsaturated fatty acids following a long fermentation period. The fermentation of koji by A. oryzae liberated several bioactive phenolic compounds, including kojic acid and ferulic acid, which were the most abundant. A linear correlation between several phenolic compounds and their bioactive properties, including their radical-scavenging activity, reducing power, metal-chelating activity, and ability to inhibit linoleic acid oxidation was observed. This suggested an important role of koji phenolics in the oxidative stability of fermented fish paste. The activities of different carbohydrate-cleaving enzymes, including α-amylase, cellulase, and β-glucosidase, were positively correlated with the liberation of several phenolic compounds through koji fermentation. Thus, the application of koji offers a novel strategy to enhance the oxidative stability of newly developed fermented fish miso. PRACTICAL APPLICATION: Application of traditional Japanese koji fermentation technique to develop an aroma enriched fish meat bases seasoning has been established. Aspergillus oryzae-inoculated koji releases several carbohydrate-cleaving enzymes, including α-amylase, cellulose, and β-glucosidase, which led to the liberation of several phenolic compounds during fermentation. Improvement of oxidative stability of the fermented fish meat paste by koji phenolics suggests a useful strategy to uplift the value of different trash fish meat-based seasoning through proper utilization of the present technique.  相似文献   
992.
Nitrite reductase gene (nirS) fragments in the activated sludge obtained from a sequencing batch reactor (SBR) under anaerobic-aerobic condition were cloned and classified by restriction fragment length polymorphism (RFLP) analysis, and representative fragments were sequenced. One of the nirS clones was approximately 70% of all nirS clones in anaerobic/aerobic (existing oxygen and nitrate) cycle operation in which a large amount of anoxic phosphate uptake was observed. Although the activated sludge samples analyzed might contain bacteria that did not accumulate polyphosphate, it was likely that this nirS fragment sequence was that from denitrifying polyphosphate-accumulating organisms (DNPAOs) which can utilize both oxygen and nitrate as electron acceptors. The sequence was similar to the nirS sequences of Thauera mechernichensis (83% similarity) and Azoarcus tolulyticus (83% similarity) both of which belong to the Rhodocyclus group.  相似文献   
993.
A nonculture method utilizing a novel apparatus, the bioplorer, was developed. The bioplorer is composed of an efficient cell separation unit, a focusing-free microscopic device, and an image analysis program. A meat or vegetable suspension is poured into the cell separation funnel, and insoluble matter in the sample suspension is trapped by prefilters. Microbial cells passing through the two prefilters are then trapped by the membrane filter (pore size, 0.4 microm). Trapped cells are double-stained with 4',6'-diamidino-2-phenylindole and propidium iodide, and the membrane filter is removed and set on the focusing-free microscope. A fluorescent image is then recorded. Total numbers of viable and dead cells on the membrane filter can thus be determined automatically. One assay can be performed within 10 min, which is much faster than the culture method. The results obtained with both the nonculture method and the culture method for meat and vegetable samples were highly correlated (r = 0.953 to 0.998). This method is feasible for the practical purpose of food safety control.  相似文献   
994.
Denaturing gradient gel electrophoresis (DGGE) based on small subunit rRNA gene was applied to a traditional rice vinegar fermentation process in which the conversion of rice starch into acetic acid proceeded in a pot. The fungal DGGE profile indicated that the transition from Aspergillus oryzae to Saccharomyces sp. took place at the initial stage at which alcohol production was observed. The early stage was characterized by the coexistence of Saccharomyces sp. and lactic acid bacteria. Almost all of the bacterial DGGE bands related to lactic acid bacteria were replaced by bands derived from Lactobacillus acetotolerance and Acetobacter pasteurianus at the stage at which acetic acid started to accumulate. The microbial succession, tested in three different pots, was found to be essentially identical. Among the bacteria isolated at the early stage, some species differed from those detected by DGGE. This is the first report to reveal the microbial community succession that occurs during a unique vinegar fermentation process, as determined by a culture-independent method.  相似文献   
995.
Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorohexane sulfonate (PFHS), and perfluorooctane sulfonamide (PFOSA) are widely distributed in aquatic ecosystems. Despite studies reporting the occurrence of PFCs in aquatic organisms, the fate of PFCs in tidal flat and marine coastal ecosystems is not known. In this study, we determined concentrations of PFOS, PFOA, PFNA, PFHS, and PFOSA in sediments; benthic organisms, including lugworm, mussel, crab, clam, oyster, and mudskipper fish from tidal flat; and shallow water species, such as filefish, bream, flounder, shark, finless porpoise, gull, and mallard collected from the Ariake Sea, Japan. PFOS and PFOA were detected in most of the samples analyzed, followed by PFNA, PFOSA, and PFHS. In shallow water species, PFOS was the dominant contaminant, and elevated concentrations were found in higher trophic level species, such as marine mammals and omnivorous birds. These results suggest biomagnification of PFOS through the coastal food chain. In contrast, PFOA was the most abundant compound in tidal flat organisms and sediments. PFOA concentrations in sediments, lugworms, and omnivorous mudskippers in tidal flat were approximately 1 order of magnitude greater than the levels of PFOS. This indicates differences in exposure pattern and bioavailability of PFOS and PFOA between shallow water and tidal flat organisms. The accumulation profiles of PFCs were compared with those of organochlorines (polychlorinated biphenyls, PCB), organotin (tributyltin,TBT), and polycyclic aromatic hydrocarbons (PAHs) in tidal flat and shallow water samples collected from the Ariake Sea. Concentrations of PFCs in sediments and in tidal flat organisms were significantly lower than that found for PCBs, TBT, and PAHs. Nevertheless, PFOS concentrations in shallow water species were comparable to and/or significantly greater than those of other classes of contaminants. This implies that the aqueous phase is a major sink for PFCs, which is different from what was observed for nonpolar organic pollutants.  相似文献   
996.
997.
A membrane-aerated biofilm reactor (MABR) capable of simultaneous nitrification and denitrification in a single reactor vessel was developed to investigate the characteristics of nitrogen removal from high-strength nitrogenous wastewater, and biofilm analysis using microelectrodes and the fluorescence in situ hybridization (FISH) technique was performed. Mean removal percentages of total organic carbon (TOC) and nitrogen were 96% and 83% at removal rates of 5.76 g-C m(-2) d(-1) and 4.48 g-N m(-2) d(-1), respectively. For stable removal efficiency, constant washing of the biofilm was needed. Dissolved oxygen microelectrode measurement revealed that the biofilm thickness was about 1600 microm, and that oxygen penetrated about 300 to 700 microm, from the outer surface of the membrane. Furthermore, FISH analysis revealed that ammonia-oxidizing bacteria (AOB) were located near the outer surface of the membrane, whereas other bacteria were located from the inner to the outer part of the biofilm. Combining these results demonstrated that simultaneous nitrification and denitrification occurred in the biofilm of the MABR system. In addition, stoichiometric analysis revealed that after 130 d(-1), the free ammonia (FA) concentration ranged within the concentration causing inhibition of the growth of nitrite oxidizing bacteria (NOB) and that AOB consumed 86% of the oxygen supplied through the intra-membrane. These results indicate that nitrogen removal not via nitrate but via nitrite was mainly achieved in the MABR system.  相似文献   
998.
New biscyanamides containing o-substituted groups or a phenyl-ether linkage were synthesized. The curing reaction behaviors of the biscyanamides were investigated. All the prepared biscyanamides began to polymerize as soon as they melted after being put on a heated plate beyond a certain temperature. The cured resins of each biscyanamides were prepared on the optimal conditions. Optimal conditions for cured resins were obtained from the curing reaction behaviors of each biscyanamide by differential scanning calorimetry (DSC). The effect of chemical structures of the biscyanamides on the thermal and mechanical properties of the cured resins such as seen by thermal gravimetric analysis (TGA), density, and flexural strength were studied. The introduction of alkyl groups into the ortho position decreased intermolecular interactions. The introduction of a long phenyl-ether linkage into the structure gave a broad exothermal peak in the DSC and good workability for the preparation of the cured resins. Moreover, the extension between cross-linkings improved the flexibility of the cured resins. The cured resins with fluorine-containing substituent groups also had better thermal stability in the air compared with hydrocarbon group resins.  相似文献   
999.
Uniformly dispersed, air-stable carbon composites containing ultrafine α-Fe, Co, or Ni particles were obtained by a careful two-step thermal degradation of a copolymer of acrylonitrile (AN) and 2,4-hexadienyl-[tri(carbonyl)iron] acrylate. Carbonization yields were 45–55% and metal particle size ranged from 80 to 120 nm. Analogous degradation of the acrylonitrile copolymer with CoCl2(AN)2, CoCl2(4-vinylpyridine)2, or Ni(bis-styrene carboxylate) gave similar composites containing β-Co (18 nm), β-Co (55 nm), or cubic Ni (52 nm) particles, respectively, with lower carbonization yields. Other salient features noted for the metal-containing composites are progressive graphitization promoted by catalysis of nascent metal species at low temperature, microporous structures with surface areas of 75 and 55 m2 g?1 for Co and Ni composites, respectively, high electrical conductivities (10–102 S cm?1), ferromagnetism, and catalysis in the decomposition of H2O2.  相似文献   
1000.
Honeycomb type solid oxide fuel cell (SOFC) using a Ag mesh as a current collector and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) as an electrolyte was studied for reducing production cost. When an Ag mesh was used as a current collector, the power density of the cell became lower than that of a cell using a Pt mesh due to the relatively worse contact caused by the lower calcination temperature, particularly in the case of the anode. The preparation method and the electrode structure were investigated for the purpose of increasing the power density of the cell using the Ag current collector. It was found that an interlayer of Ni–Sm0.2Ce0.8O1.9 (1:9) between the NiFe–LSGM cermet anode and the LSGM electrolyte was effective for decreasing the pre-calcination temperature for anode fabrication. Much higher power densities of 300 mW cm−2 and 140 mW cm−2 at 1073 K and 973 K, respectively, were achieved by inserting an interlayer. These results for the power density of the cell using the Ag mesh current collector after the optimization of the electrode structure and the preparation procedure are close to those of the cell using the Pt mesh current collector cell presented in our previous work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号