首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40132篇
  免费   13049篇
  国内免费   6篇
电工技术   731篇
综合类   2篇
化学工业   17402篇
金属工艺   372篇
机械仪表   736篇
建筑科学   1725篇
矿业工程   5篇
能源动力   857篇
轻工业   7158篇
水利工程   288篇
石油天然气   44篇
无线电   6958篇
一般工业技术   11665篇
冶金工业   625篇
原子能技术   36篇
自动化技术   4583篇
  2023年   13篇
  2022年   31篇
  2021年   235篇
  2020年   1433篇
  2019年   3174篇
  2018年   3115篇
  2017年   3446篇
  2016年   3895篇
  2015年   3955篇
  2014年   3901篇
  2013年   5025篇
  2012年   2751篇
  2011年   2411篇
  2010年   2682篇
  2009年   2571篇
  2008年   2126篇
  2007年   1950篇
  2006年   1720篇
  2005年   1418篇
  2004年   1377篇
  2003年   1347篇
  2002年   1305篇
  2001年   1114篇
  2000年   1087篇
  1999年   470篇
  1998年   69篇
  1997年   67篇
  1996年   39篇
  1995年   34篇
  1994年   36篇
  1993年   39篇
  1992年   23篇
  1991年   28篇
  1990年   28篇
  1989年   19篇
  1988年   18篇
  1987年   17篇
  1986年   22篇
  1985年   15篇
  1984年   17篇
  1983年   17篇
  1982年   15篇
  1981年   19篇
  1980年   12篇
  1979年   16篇
  1978年   15篇
  1976年   16篇
  1975年   10篇
  1974年   9篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Correlated quantum‐chemical calculations are applied to analyze the amplitude of the electronic‐transfer integrals that describe charge transport in interacting carbon nanotubes (CNTs) by investigating the influences of: i) the relative positions of the CNTs, ii) the size of the CNTs, and iii) their chemical impurities. Our results indicate that the mobility of the charge carrier is extremely sensitive to the molecular packing and the presence of chemical impurities. The largest splitting for the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels is in the case of perfectly cofacial conformations where hexagons face hexagons in the dimer structure. We found that the diameter of the CNT determines the type of transporting carrier: for CNTs with large diameters hole transport dominates, while for thin CNTs electron transport dominates. In general, the carrier mobility for the perfect CNTs (n ≥ 3) is less pronounced than that of C60 due to their relatively small strain. B‐ and N‐doped CNTs exhibit considerably larger mobilities owing to the possibility of metallic behavior. These results provide a plausible explanation for the high mobility found experimentally in a field‐effect transistor (FET) made from a large‐area, well‐aligned CNT array. In addition, these hole‐rich and electron‐rich dopants imply potential applications in nanoelectronics.  相似文献   
992.
A one‐dimensional pattern‐forming state of a cholesteric liquid crystal (CLC) is used as a template for the self‐organization of ordered, spatially orientated, acetylene‐based semiconducting polymers. The polymers are formed by metathesis reaction with all chemical components contained in an ordinary electro‐optic cell. The polymer morphology consists of parallel ~ 1 μm thick bundles, uniformly spaced at ~ 10 μm over the full macroscopic active area of the cell substrates. The polymer templating can be explained by a model that predicts a corrugation in polymer density determined by the spatially periodic profile of the orientational energy density associated with the pattern‐forming CLC state.  相似文献   
993.
The photonic quantum ring (PQR) laser is a three dimensional whispering gallery (WG) mode laser and has anomalous quantum wire properties, such as microampere to nanoampere range threshold currents and √T‐dependent thermal red shifts. We observed uniform bottom emissions from a 1‐kb smart pixel chip of a 32×32 InGaAs PQR laser array flip‐chip bonded to a 0.35 µm CMOS‐based PQR laser driver. The PQR‐CMOS smart pixel array, now operating at 30 MHz, will be improved to the GHz frequency range through device and circuit optimization.  相似文献   
994.
Using stereo images with ephemeris data from the Korea Multi‐Purpose Satellite‐1 electro‐optical camera (KOMPSAT‐1 EOC), we performed geometric modeling for three‐dimensional (3‐D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3‐D positioning using the KOMPSAT‐1 EOC stereo images. The results show that the positioning accuracy was about 12‐17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3‐D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.  相似文献   
995.
Analysis of T waves in the ECG is an essential clinical tool for diagnosis, monitoring, and follow-up of patients with heart dysfunction. During atrial flutter, this analysis has been so far limited by the perturbation of flutter waves superimposed over the T wave. This paper presents a method based on missing data interpolation for eliminating flutter waves from the ECG during atrial flutter. To cope with the correlation between atrial and ventricular electrical activations, the CLEAN deconvolution algorithm was applied to reconstruct the spectrum of the atrial component of the ECG from signal segments corresponding to TQ intervals. The locations of these TQ intervals, where the atrial contribution is presumably dominant, were identified iteratively. The algorithm yields the extracted atrial and ventricular contributions to the ECG. Standard T-wave morphology parameters (T-wave amplitude, T peak-T end duration, QT interval) were measured. This technique was validated using synthetic signals, compared to average beat subtraction in a patient with a pacemaker, and tested on pseudo-orthogonal ECGs from patients in atrial flutter. Results demonstrated improvements in accuracy and robustness of T-wave analysis as compared to current clinical practice.  相似文献   
996.
Silver nanoparticles embedded in a dielectric material have strong scattering properties under light illumination, due to localized surface plasmons. This effect is a potential way to achieve light trapping in thin‐film solar cells. In this paper we study light scattering properties of nanoparticles on glass and ZnO, and on silver coated with ZnO, which represent the back reflector of a solar cell. We find that large nanoparticles embedded in the dielectric at the back contact of amorphous silicon solar cells lead to a remarkable increase in short circuit current of 20% compared to co‐deposited cells without nanoparticles. This increase is strongly correlated with the enhanced cell absorption in the long wavelengths and is attributed to localized surface plasmons. We also discuss the electrical properties of the cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
997.
998.
A novel buffering method is presented to improve the stability of zinc oxide processed in aqueous solutions. By buffering the aqueous solution with a suitable quantity of sacrificial zinc species, the dissolution of functional zinc oxide structures and the formation of unwanted impurities can be prevented. The method is demonstrated for ZnO films and nanowires processed in aqueous solutions used for the selective etching of mesoporous anodic alumina templates and the electrochemical deposition of Cu2O. In both cases, improved ZnO stability is observed with the buffering method. ZnO‐Cu2O heterojunction solar cells (bilayer and nanowire cells) synthesized using both traditional and buffered deposition methods are characterized by impedance spectroscopy and solar simulation measurements. Buffering the Cu2O deposition solution is found to reduce unwanted recombination at the heterojunction and improve the photovoltaic performance.  相似文献   
999.
In this work, we demonstrate the mode transition of charge generation between direct‐current (DC) and alternating‐current (AC) from transparent flexible (TF) piezoelectric nanogenerators (NGs), which is dependent solely on the morphology of zinc oxide (ZnO) nanorods without any use of an AC/DC converter. Tilted ZnO nanorods grown on a relatively low‐density seed layer generate DC‐type piezoelectric charges under a pushing load, whereas vertically aligned ZnO nanorods on a relatively high‐density seed layer create AC‐type charge generation. The mechanism for the geometry‐induced mode transition is proposed and characterized. We also examine the output performance of TF‐NGs which employ an indium zinc tin oxide (IZTO) film as a TF electrode. It is demonstrated that an IZTO film has improved electrical, optical, and mechanical properties, in comparison with an indium tin oxide (ITO) film. Enhanced output charge generation is observed from IZTO‐based TF‐NGs when TF‐NGs composed of only ITO electrodes are compared. This is attributed to the higher Schottky barrier and the lower series resistance of the IZTO‐based TF‐NGs. Thus, by using IZTO, we can expect TF‐NGs with superior mechanical durability and power generating performance.  相似文献   
1000.
Micro‐solid oxide fuel cells (μ‐SOFCs) are fabricated on nanoporous anodic aluminum oxide (AAO) templates with a cell structure composed of a 600‐nm‐thick AAO free‐standing membrane embedded on a Si substrate, sputter‐deposited Pt electrodes (cathode and anode) and an yttria‐stabilized zirconia (YSZ) electrolyte deposited by pulsed laser deposition (PLD). Initially, the open circuit voltages (OCVs) of the AAO‐supported μ‐SOFCs are in the range of 0.05 V to 0.78 V, which is much lower than the ideal value, depending on the average pore size of the AAO template and the thickness of the YSZ electrolyte. Transmission electron microscopy (TEM) analysis reveals the formation of pinholes in the electrolyte layer that originate from the porous nature of the underlying AAO membrane. In order to clog these pinholes, a 20‐nm thick Al2O3 layer is deposited by atomic layer deposition (ALD) on top of the 300‐nm thick YSZ layer and another 600‐nm thick YSZ layer is deposited after removing the top intermittent Al2O3 layer. Fuel cell devices fabricated in this way manifest OCVs of 1.02 V, and a maximum power density of 350 mW cm?2 at 500 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号