首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   74篇
  国内免费   1篇
电工技术   4篇
化学工业   457篇
金属工艺   9篇
机械仪表   4篇
建筑科学   23篇
矿业工程   1篇
能源动力   18篇
轻工业   146篇
水利工程   2篇
无线电   45篇
一般工业技术   74篇
冶金工业   25篇
自动化技术   53篇
  2024年   2篇
  2023年   18篇
  2022年   137篇
  2021年   134篇
  2020年   44篇
  2019年   36篇
  2018年   32篇
  2017年   32篇
  2016年   43篇
  2015年   28篇
  2014年   32篇
  2013年   53篇
  2012年   48篇
  2011年   55篇
  2010年   30篇
  2009年   21篇
  2008年   21篇
  2007年   24篇
  2006年   17篇
  2005年   9篇
  2004年   9篇
  2003年   9篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有861条查询结果,搜索用时 34 毫秒
151.
152.
The region of the investigated receptor is situated in the southern part of the Adriatic Sea in the Mediterranean. The measuring station is located on the seashore, which, being considered as a border area, is representative for the qualitative and quantitative estimation of the influence of marine and continental aerosols on the content of major ions in precipitation. In the sampling period, precipitation in the region of the investigated receptor was more abundant during the summer and autumn than during the winter and spring. The most frequent precipitation heights were up to 20 mm, while high precipitation came exclusively from the continental region. The results of the measurements of ions readily soluble in water were used for the differentiation of marine from continental contributions of primary and secondary aerosols to their content in the precipitation. Using PCA, it was shown that main contribution of Cl(-), Na(+) and Mg(2+) came from primary marine aerosols, while the contribution from continental sources was dominant for the content of SO(4)(2-), NO(3)(-), NH(4)(+) and Ca(2+) in the precipitation. The continental origin of Ca(2+) was from a primary source, while SO(4)(2-), NO(3)(-) and NH(4)(+) were representatives of secondary aerosols produced by reactions between acid oxides and alkaline species in the atmosphere, but SO(4)(2-) and NO(3)(-) also exist in the precipitation as free acids. The origin of the trace elements Cd, Cu, Pb and Zn in the precipitation came from anthropogenic emission sources. The results obtained in this work are based on experimental data from 609 samples collected during the period 1995-2000.  相似文献   
153.
154.
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.  相似文献   
155.
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.  相似文献   
156.
Cancer has been one of the most prevalent diseases around the world for many years. Its biomarkers are biological molecules found in the blood or other body fluids of people with cancer diseases. These biomarkers play a crucial role not only in the diagnosis of cancer diseases, but also in risk assessment, selection of treatment methods, and tracking its progress. Therefore, highly sensitive and selective detection and determination of cancer biomarkers are essential from the perspective of oncological diagnostics and planning the treatment process. Immunosensors are special types of biosensors that are based on the recognition of an analyte (antigen) by an antibody. Sandwich immunosensors apply two antibodies: a capture antibody and a detection antibody, with the antigen ‘sandwiched’ between them. Immunosensors’ advantages include not only high sensitivity and selectivity, but also flexible application and reusability. Surface-enhanced Raman spectroscopy, known also as the sensitive and selective method, uses the enhancement of light scattering by analyte molecules adsorbed on a nanostructured surface. The combination of immunosensors with the SERS technique further improves their analytical parameters. In this article, we followed the recent achievements in the field of sandwich SERS immunosensors for cancer biomarker detection and/or determination.  相似文献   
157.
Hernia repairs are the most common abdominal wall elective procedures performed by general surgeons. Hernia-related postoperative infective complications occur with 10% frequency. To counteract the risk of infection emergence, the development of effective, biocompatible and antimicrobial mesh adjuvants is required. Therefore, the aim of our in vitro investigation was to evaluate the suitability of bacterial cellulose (BC) polymer coupled with gentamicin (GM) antibiotic as an absorbent layer of surgical mesh. Our research included the assessment of GM-BC-modified meshes’ cytotoxicity against fibroblasts ATCC CCL-1 and a 60-day duration cell colonisation measurement. The obtained results showed no cytotoxic effect of modified meshes. The quantified fibroblast cells levels resembled a bimodal distribution depending on the time of culturing and the type of mesh applied. The measured GM minimal inhibitory concentration was 0.47 µg/mL. Results obtained in the modified disc-diffusion method showed that GM-BC-modified meshes inhibited bacterial growth more effectively than non-coated meshes. The results of our study indicate that BC-modified hernia meshes, fortified with appropriate antimicrobial, may be applied as effective implants in hernia surgery, preventing risk of infection occurrence and providing a high level of biocompatibility with regard to fibroblast cells.  相似文献   
158.
At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core–shell NPs. As revealed by quantitative steady‐state and time‐resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics. Although the increased amount of Yb3+ ions boosts UCNP performance by amplifying the absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy migration to the surface, thereby reducing the overall energy transfer efficiency to the activator ions. The results provide yet another proof that UC phosphor chemistry combined with materials engineering through intentional core@shell structures may help to fine‐tune the luminescence features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and display technologies.  相似文献   
159.
It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and βO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18βH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and β-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7–4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and βO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and βO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.  相似文献   
160.
Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders’ pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号