首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1188篇
  免费   78篇
电工技术   8篇
化学工业   524篇
金属工艺   9篇
机械仪表   23篇
建筑科学   30篇
能源动力   29篇
轻工业   278篇
水利工程   9篇
石油天然气   6篇
无线电   31篇
一般工业技术   146篇
冶金工业   24篇
原子能技术   3篇
自动化技术   146篇
  2024年   4篇
  2023年   22篇
  2022年   127篇
  2021年   135篇
  2020年   54篇
  2019年   42篇
  2018年   40篇
  2017年   50篇
  2016年   38篇
  2015年   29篇
  2014年   53篇
  2013年   65篇
  2012年   78篇
  2011年   96篇
  2010年   62篇
  2009年   78篇
  2008年   61篇
  2007年   51篇
  2006年   39篇
  2005年   25篇
  2004年   25篇
  2003年   19篇
  2002年   22篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
排序方式: 共有1266条查询结果,搜索用时 0 毫秒
31.
32.
Clotrimazole is a common choice for the treatment of vulvovaginal infections, but its low solubility and some side effects pose a challenge to its application. This work evaluated the feasibility to formulate clotrimazole-loaded cationic nanocapsules using Eudragit® RS100 and medium chain triglycerides as polymer and oily core, respectively, by the method of interfacial deposition of a preformed polymer. The physicochemical characteristics of nanocapsule formulations were evaluated at 0 day and 60 days after preparation. Particle size, zeta potential, polydispersity index, pH and drug content were stable during this period. In addition, nanocapsules were able to protect clotrimazole from photodegradation under UV radiation. By the dialysis bag diffusion technique, the nanosized formulations showed prolonged release of clotrimazole by anomalous transport and first order kinetics. A microbiological study was carried out by the microdilution method and showed that nanocapsules (mean size: 144 nm; zeta potential: + 12 mV) maintained the antifungal activity of clotrimazole against Candida albicans and Candida glabrata strains susceptible and resistant to fluconazole.  相似文献   
33.
34.
35.
36.
In the present paper, three different approaches are proposed to model the convective drying of food. The performance of thin-layer, pure neural network and hybrid neural model is compared in a wide range of operating conditions, with two different vegetables, available either as cylinders or as slabs with different characteristic dimensions. It was found that the thin-layer model was adequate to describe food drying behavior, but it could be applied only as a fitting procedure. Pure neural models gave accurate predictions in some situations, but exhibited poor performance when tested outside the range of operating conditions exploited during their development. Finally, it was shown that hybrid neural models, formulated as a combination of both theoretical and neural network models, are capable of offering the most accurate predictions of system behavior with average relative errors never exceeding 10%, even in operating conditions unexploited during the definition of the neural part of the model. The results obtained proved that the hybrid neural paradigm is a novel and efficient modeling technique that could be used successfully in food processing, thus allowing drying process optimization to be achieved, and efficient and fast on-line controllers to be implemented.  相似文献   
37.
Thermal sprayed MCrAlY coatings are widely used as a bond coat in thermal barrier systems to protect the substrate from corrosion and high temperature oxidation and to improve the compatibility between the ceramic top coat and metallic substrate. In this paper, the high temperature oxidation resistance of MCrAlY coatings with modified compositions was evaluated; in particular, the effect of the addition of reactive and refractory elements (Ta, Re, Si, and Hf) was investigated. MCrAlY coatings were obtained by high velocity oxygen fuel spray and vacuum plasma spray techniques; samples were exposed to air at 1423 K (1150 °C) and the oxidation kinetics were evaluated by measuring the thickness of the thermally grown oxide (TGO) scale at several exposure times. Experimental data confirmed that the oxidation resistance of MCrAlY coatings is strictly related to the amount of the reactive and refractory elements in the starting powders and that a thorough understanding of the microstructural modifications taking place during oxidation is essential for controlling TGO growth and thermal barriers’ durability.  相似文献   
38.
Purpose: The aim of this study was to evaluate the influence of previous application of an adhesive system on bond strength of resinous liner materials to dentin. Methods: Ninety bovine incisors crowns had a 6 × 6 mm area of dentin exposed, with minimum of 2 mm thickness. They were embedded in acrylic resin, and the dentin was polished with P600 SiC sandpaper for 30 s to standardize the smear layer. The specimens were divided into 6 groups (n = 15) according to the application or not of a self-etching system (Futurabond U – Voco) and the type of resinous liner used: A+Ionoseal (adhesive and Ionoseal – Voco); Ionoseal (Ionoseal only); A+Vitrebond (adhesive and Vitrebond – 3M/ESPE); Vitrebond (Vitrebond only); A+Ionosit (adhesive and Ionosit – DMG) and Ionosit (Ionosit only). Adhesives were used following manufacturer’s instructions, and the liner materials were applied inside a 2-mm-depth matrix and light-cured for 20 s. The bond strength was measured by microtensile test, using a universal testing machine with a cross-speed of 1 mm/min. Data were analyzed using one-way ANOVA and Tukey’s test (p < 0.05). Results: The adhesive system application increased bond strength of all liners tested. Ionoseal presented the highest bond strength when the adhesive system was used and exhibited similar performance to Vitrebond without adhesive. Ionosit without adhesive showed the smallest bond strength compared with the other liners tested. Conclusion: The application of an adhesive system prior to the use of the resinous liners improved the bond strength to dentin and should be preconized.  相似文献   
39.
The aim of this study was to evaluate tubular dentin sealer penetration, comparing different final irrigation protocols using a conventional needle (CONV), EndoActivator system (EAS), EndoVac system (EVS), and ultrasound (PUI). Initially, fifty‐two first maxillary molars with a single canal in the palatal root, without abrupt curvatures, resorptive processes, or previous endodontic treatment were selected for this study. Then, the crowns were sectioned to obtain palatal roots 15 mm in length. The root canals were prepared with the ProTaper Universal System and irrigated with 5% NaOCl. Afterwards, the specimens were divided into four groups (n. 13), according to the final irrigation protocol: CONV, EAS, EVS, and PUI. After filling, slices at 3 mm and 5 mm from the apex were obtained for analysis by confocal laser scanning microscopy. Two‐way comparisons between the groups and the levels were performed with Games Howell's test (p < .05). Tubular dentin sealer penetration was higher at 5 mm compared with 3 mm from the apex (p < .05). The EAS group showed a higher percentage of tubular dentin sealer penetration, compared with the CONV group, at both levels. At 3 mm, there was no statistically significant difference among EAS, EVS, and PUI; however, these groups showed better performance, compared with the CONV group. At 5 mm, there was no statistically significant difference between the EAS and EVS groups, but both showed higher sealer penetration than the PUI group (p < .05). The EAS and EVS groups achieved better degrees of tubular dentin sealer penetration, compared with the other groups.  相似文献   
40.
In aeronautical industry, stringent requirements relate to the quality of drilled holes in carbon fiber reinforced plastic (CFRP) composite laminates as low hole quality determines poor assembly tolerance, structural properties reduction, and risk for long-term part performance. Non-destructive quality control techniques were applied to drilled CFRP laminate stacks for aeronautical applications to characterize the material damage induced by drilling in order to assess the hole quality for product acceptability. Experimental metrology procedures, including optical measurements and ultrasonic non-destructive evaluation, were employed to appraise both external and internal induced material damage in holes machined under diverse drilling conditions. The optical inspection procedure, comparable to the visual inspection method regularly utilized in industry, provided delaminated area evaluations that are underestimated in the case of severe drilling conditions by up to 7% for hole exit and up to 5% for hole entry. In the case of less severe drilling conditions, the underestimation was limited to <2.5% for both hole exit and hole entry, which can be considered a practically negligible disparity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号