首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1221篇
  免费   74篇
电工技术   9篇
化学工业   531篇
金属工艺   10篇
机械仪表   23篇
建筑科学   32篇
能源动力   29篇
轻工业   281篇
水利工程   11篇
石油天然气   6篇
无线电   31篇
一般工业技术   150篇
冶金工业   31篇
原子能技术   4篇
自动化技术   147篇
  2024年   4篇
  2023年   22篇
  2022年   128篇
  2021年   136篇
  2020年   54篇
  2019年   42篇
  2018年   40篇
  2017年   52篇
  2016年   39篇
  2015年   29篇
  2014年   53篇
  2013年   66篇
  2012年   82篇
  2011年   97篇
  2010年   64篇
  2009年   79篇
  2008年   61篇
  2007年   51篇
  2006年   40篇
  2005年   26篇
  2004年   26篇
  2003年   19篇
  2002年   22篇
  2001年   7篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1965年   1篇
排序方式: 共有1295条查询结果,搜索用时 12 毫秒
991.
Over the last two decades, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted wide interest as a key player in immune regulation, fostering the design and development of small molecule inhibitors to restore immune response in tumor immunity. In this framework, biochemical, structural, and pharmacological studies have unveiled peculiar structural plasticity of IDO1, with different conformations and functional states that are coupled to fine regulation of its catalytic activity and non-enzymic functions. The large plasticity of IDO1 may affect its ligand recognition process, generating bias in structure-based drug design campaigns. In this work, we report a screening campaign of a fragment library of compounds, grounding on the use of three distinct conformations of IDO1 that recapitulate its structural plasticity to some extent. Results are instrumental to discuss tips and pitfalls that, due to the large plasticity of the enzyme, may influence the identification of novel and differentiated chemical scaffolds of IDO1 ligands in structure-based screening campaigns.  相似文献   
992.
Redox status and inflammation are related to the pathogenesis of the majority of diseases. Therefore, understanding the role of specific food-derived molecules in the regulation of their specific pathways is a relevant issue. Our previous studies indicated that K-8-K and S-10-S, milk and soy-derived bioactive peptides, respectively, exert antioxidant effects through activation of the Keap1/Nrf2 pathway. A crosstalk between Nrf2 and NF-κB, mediated by the action of heme oxygenase (HO-1), is well known. On this basis, we studied if these peptides, in addition to their antioxidant activity, could exert anti-inflammatory effects in human cells. First, we observed an increase of HO-1 expression in Caco-2 cells treated with K-8-K and S-10-S, following the activation of the Keap1/Nrf2 pathway. Moreover, when cells are treated with the two peptides and stimulated by TNF-α, the levels of NF-κB in the nucleus decreased in comparison with TNF-α alone. In the same conditions, we observed the downregulation of the gene expression of proinflammatory cytokines (IL1B, IL6, and TNF), while the anti-inflammatory cytokine gene, IL1RN, was upregulated in Caco-2 cells processed as reported above. Then, when the cells were pretreated with the two peptides and stimulated with LPS, a different proinflammatory factor, (TNF-α) was estimated to have a lower secretion in the supernatant of cells. In conclusion, these observations confirmed that Nrf2-activating bioactive peptides, K-8-K and S-10-S, exerted anti-inflammatory effects by inhibiting the NF-κB pathway.  相似文献   
993.
In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8–positive cells’ dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.  相似文献   
994.
Patients with non-small cell lung cancer (NSCLC) develop bone metastasis (BoM) in more than 50% of cases during the course of the disease. This metastatic site can lead to the development of skeletal related events (SREs), such as severe pain, pathological fractures, spinal compression, and hypercalcemia, which reduce the patient’s quality of life. Recently, the treatment of advanced NSCLC has radically changed due to the advent of immunotherapy. Immune checkpoint inhibitors (ICI) alone or in combination with chemotherapy have become the main therapeutic strategy for advanced or metastatic NSCLC without driver gene mutations. Since survival has increased, it has become even more important to treat bone metastasis to prevent SRE. We know that the presence of bone metastasis is a negative prognostic factor. The lower efficacy of immunotherapy treatments in BoM+ patients could be induced by the presence of a particular immunosuppressive tumor and bone microenvironment. This article reviews the most important pre-clinical and clinical scientific evidence on the reasons for this lower sensitivity to immunotherapy and the need to combine bone target therapies (BTT) with immunotherapy to improve patient outcome.  相似文献   
995.
The therapeutic landscape in patients with advanced non-small-cell lung cancer harboring oncogenic biomarkers has radically changed with the development of targeted therapies. Although lung cancers are known to frequently metastasize to the brain, oncogene-driven non-small-cell lung cancer patients show a higher incidence of both brain metastases at baseline and a further risk of central nervous system progression/relapse. Recently, a new generation of targeted agents, highly active in the central nervous system, has improved the control of intracranial disease. The intracranial activity of these drugs poses a crucial issue in determining the optimal management sequence in oncogene-addicted non-small-cell lung cancer patients with brain metastases, with a potential change of paradigm from primary brain irradiation to central nervous system penetrating targeted inhibitors.  相似文献   
996.
Chronic pain is a widespread disorder affecting millions of people and is insufficiently addressed by current classes of analgesics due to significant long-term or high dosage side effects. A promising approach that was recently proposed involves the systemic inhibition of the voltage-gated sodium channel Nav1.7, capable of cancelling pain perception completely. Notwithstanding numerous attempts, currently no drugs have been approved for the inhibition of Nav1.7. The task is complicated by the difficulty of creating a selective drug for Nav1.7, and avoiding binding to the many human paralogs performing fundamental physiological functions. In our work, we obtained a promising set of ligands with up to 5–40-fold selectivity and reaching 5.2 nanomolar binding affinity by employing a proper treatment of the problem and an innovative differential in silico screening procedure to discriminate for affinity and selectivity against the Nav paralogs. The absorption, distribution, metabolism, and excretion (ADME) properties of our top-scoring ligands were also evaluated, with good to excellent results. Additionally, our study revealed that the top-scoring ligand is a stereoisomer of an already-approved drug. These facts could reduce the time required to bring a new effective and selective Nav1.7 inhibitor to the market.  相似文献   
997.
A tyrosine‐derived imidazolidin‐4‐one was immobilized on a modified poly(ethylene glycol) and converted in situ into a soluble polymer‐supported catalyst for the enantioselective Diels–Alder cycloaddition of acrolein to 1,3‐cyclohexadiene (up to 92% ee) and 2,3‐dimethyl‐1,3‐butadiene (73% ee). Catalyst recycling (up to four cycles) was accompanied by some loss of the chemical efficiency and marginal erosion of the enantioselectivity.  相似文献   
998.
(2S,4R)‐4‐Hydroxyproline has been anchored to the monomethyl ether of poly(ethylene glycol), MW 5000, by means of a succinate spacer to afford a soluble, polymer‐supported catalyst (PEG‐Pro) for enantioselective aldol and iminoaldol condensation reactions. This organic catalyst can be considered as a minimalistic version of a type I aldolase enzyme, with the polymer chain replacing the enzyme's peptide backbone, and the proline residue acting as the enzyme's active site. In the presence of PEG‐Pro (0.25–0.35 mol equiv.), acetone reacted with enolizable and non‐enolizable aldehydes and imines to afford β‐ketols and β‐aminoketones in good yield and high enantiomeric excess (ee), comparable to those obtained using non‐supported proline derivatives as the catalysts. Extension of the PEG‐Pro‐promoted condensation to hydroxyacetone as the aldol donor opened an access to synthetically relevant anti‐α,β‐dihydroxyketones and syn‐α‐hydroxy‐β‐aminoketones, that were obtained in moderate to good yields, and good to high diastereo‐ and enantioselectivity. Exploiting its solubility properties, the PEG‐Pro catalyst was easily recovered and recycled to promote all of the above‐mentioned reactions, that occurred in slowly diminishing yields but virtually unchanged ee's.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号