首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2723篇
  免费   188篇
  国内免费   9篇
电工技术   57篇
综合类   1篇
化学工业   841篇
金属工艺   34篇
机械仪表   66篇
建筑科学   72篇
矿业工程   3篇
能源动力   97篇
轻工业   315篇
水利工程   10篇
石油天然气   1篇
无线电   202篇
一般工业技术   439篇
冶金工业   40篇
原子能技术   33篇
自动化技术   709篇
  2024年   4篇
  2023年   45篇
  2022年   191篇
  2021年   205篇
  2020年   81篇
  2019年   98篇
  2018年   115篇
  2017年   90篇
  2016年   137篇
  2015年   114篇
  2014年   152篇
  2013年   224篇
  2012年   172篇
  2011年   195篇
  2010年   137篇
  2009年   164篇
  2008年   137篇
  2007年   98篇
  2006年   96篇
  2005年   88篇
  2004年   64篇
  2003年   48篇
  2002年   42篇
  2001年   30篇
  2000年   25篇
  1999年   16篇
  1998年   26篇
  1997年   16篇
  1996年   23篇
  1995年   14篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1991年   7篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2920条查询结果,搜索用时 15 毫秒
61.
62.
Combined AntiRetroviral Treatments (cARTs) used for HIV infection may result in varied metabolic complications, which in some cases, may be related to patient genetic factors, particularly microRNAs. The use of monozygotic twins, differing only for HIV infection, presents a unique and powerful model for the controlled analysis of potential alterations of miRNAs regulation consequent to cART treatment. Profiling of 2578 mature miRNA in the subcutaneous (SC) adipose tissue and plasma of monozygotic twins was investigated by the GeneChip® miRNA 4.1 array. Real-time PCR and ddPCR experiments were performed in order to validate differentially expressed miRNAs. Target genes of deregulated miRNAs were predicted by the miRDB database (prediction score > 70) and enrichment analysis was carried out with g:Profiler. Processes in SC adipose tissue most greatly affected by miRNA up-regulation included (i) macromolecular metabolic processes, (ii) regulation of neurogenesis, and (iii) protein phosphorylation. Furthermore, KEGG analysis revealed miRNA up-regulation involvement in (i) insulin signaling pathways, (ii) neurotrophin signaling pathways, and (iii) pancreatic cancer. By contrast, miRNA up-regulation in plasma was involved in (i) melanoma, (ii) p53 signaling pathways, and (iii) focal adhesion. Our findings suggest a mechanism that may increase the predisposition of HIV+ patients to insulin resistance and cancer.  相似文献   
63.
Autophagy is a complex process involved in several cell activities, including tissue growth, differentiation, metabolic modulation, and cancer development. In prostate cancer, autophagy has a pivotal role in the regulation of apoptosis and disease progression. Several molecular pathways are involved, including PI3K/AKT/mTOR. However, depending on the cellular context, autophagy may play either a detrimental or a protective role in prostate cancer. For this purpose, current evidence has investigated how autophagy interacts within these complex interactions. In this article, we discuss novel findings about autophagic machinery in order to better understand the therapeutic response and the chemotherapy resistance of prostate cancer. Autophagic-modulation drugs have been employed in clinical trials to regulate autophagy, aiming to improve the response to chemotherapy or to anti-cancer treatments. Furthermore, the genetic signature of autophagy has been found to have a potential means to stratify prostate cancer aggressiveness. Unfortunately, stronger evidence is needed to better understand this field, and the application of these findings in clinical practice still remains poorly feasible.  相似文献   
64.
The connection between cytoskeleton alterations and diseases is well known and has stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc), respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the cell–substrate near-interface layer were obtained with QCM, while DHM allowed the measurement of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed, leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected the cell’s ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure, a compensatory effect of actin polymerization emerged, with increased stress fiber formation.  相似文献   
65.
Phytopathogenic fungi are among the main causes of productivity losses in agriculture. To date, synthetic chemical pesticides, such as hydroxyanilides, anilinopyrimidines and azole derivatives, represent the main treatment tools for crop plant defence. However, the large and uncontrolled use of these substances has evidenced several side effects, namely the resistance to treatments, environmental damage and human health risks. The general trend is to replace chemicals with natural molecules in order to reduce these side effects. Moreover, the valorisation of agri-food industry by-products through biotransformation processes represents a sustainable alternative to chemical synthesis in several sectors. This research is aimed at comparing the anti-phytopathogenic activity of waste bovine and porcine bile with secosteroids obtained by biotransformation of bile acids with Rhodococcus strains. The ultimate goal is to apply these natural products on food crops affected by phytopathogenic fungi.  相似文献   
66.
In the field of the ITER port plug engineering and integration task, CEA has contributed to define proposals concerning the port plugs vacuum sealing interface with the vessel flange and the equatorial plug handling.The 2001 baseline vacuum flange sealing consisted of TIG welding of a 316L strip plate on to U shapes. This arrangement presented some issues like welding access, implementation of tools, lip consumption, complex local leak test, continuous leak checking. Therefore, an alternate sealing solution based on the use of metallic gaskets is proposed. The different technical aspects are discussed to explain how this design can simplify the maintenance and deal with safety and vacuum requirements.The design of the mechanical attachment and vacuum sealing of the plug has constantly evolved, but the associated remote handling equipment was not systematically reviewed. An update of the cask and maintenance procedure was studied in order to design it in accordance with the last generic plug flange design. This includes a concept of a gripping system that uses the plug flange bolting area and, to help the remote handling process, a cantilever assisting system is suggested to increase the reliability of the transfer operation between vacuum vessel and cask.  相似文献   
67.
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.  相似文献   
68.
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.  相似文献   
69.
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients’ quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients’ quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.  相似文献   
70.
In the clinical management of solid tumors, the possibility to successfully couple the regeneration of injured tissues with the elimination of residual tumor cells left after surgery could open doors to new therapeutic strategies. In this work, we present a composite hydrogel–electrospun nanofiber scaffold, showing a modular architecture for the delivery of two pharmaceutics with distinct release profiles, that is potentially suitable for local therapy and post-surgical treatment of solid soft tumors. The composite was obtained by coupling gelatin hydrogels to poly(ethylene oxide)/poly(butylene terephthalate) block copolymer nanofibers. Results of the scaffolds’ characterization, together with the analysis of gelatin and drug release kinetics, displayed the possibility to modulate the device architecture to control the release kinetics of the drugs, also providing evidence of their activity. In vitro analyses were also performed using a human epithelioid sarcoma cell line. Furthermore, publicly available expression datasets were interrogated. Confocal imaging showcased the nontoxicity of these devices in vitro. ELISA assays confirmed a modulation of IL-10 inflammation-related cytokine supporting the role of this device in tissue repair. In silico analysis confirmed the role of IL-10 in solid tumors including 262 patients affected by sarcoma as a negative prognostic marker for overall survival. In conclusion, the developed modular composite device may provide a key-enabling technology for the treatment of soft tissue sarcoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号