首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   17篇
电工技术   1篇
化学工业   180篇
金属工艺   4篇
机械仪表   4篇
建筑科学   6篇
能源动力   13篇
轻工业   24篇
水利工程   3篇
无线电   8篇
一般工业技术   30篇
冶金工业   2篇
自动化技术   25篇
  2024年   2篇
  2023年   5篇
  2022年   63篇
  2021年   63篇
  2020年   15篇
  2019年   8篇
  2018年   12篇
  2017年   9篇
  2016年   16篇
  2015年   6篇
  2014年   5篇
  2013年   15篇
  2012年   17篇
  2011年   18篇
  2010年   13篇
  2009年   11篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
61.
DNA barcoding as a new tool for food traceability   总被引:1,自引:0,他引:1  
Food safety and quality are nowadays a major concern. Any case of food alteration, especially when reported by the media, has a great impact on public opinion. There is an increasing demand for the improvement of quality controls, hence addressing scientific research towards the development of reliable molecular tools for food analysis. DNA barcoding is a widely used molecular-based system, which can identify biological specimens, and is used for the identification of both raw materials and processed food. In this review the results of several researches are critically analyzed, in order to exploit the effectiveness of DNA barcoding in food traceability, and to delineate some best practices in the application of DNA barcoding throughout the industrial pipeline. The use of DNA barcoding for food safety and in the identification of commercial fraud is also discussed.  相似文献   
62.
Migraine is a common brain-disorder that affects 15% of the population. Converging evidence shows that migraine is associated with gastrointestinal disorders. However, the mechanisms underlying the interaction between the gut and brain in patients with migraine are not clear. In this study, we evaluated the role of the short-chain fatty acids (SCFAs) as sodium propionate (SP) and sodium butyrate (SB) on microbiota profile and intestinal permeability in a mouse model of migraine induced by nitroglycerine (NTG). The mice were orally administered SB and SP at the dose of 10, 30 and 100 mg/kg, 5 min after NTG intraperitoneal injections. Behavioral tests were used to evaluate migraine-like pain. Histological and molecular analyses were performed on the intestine. The composition of the intestinal microbiota was extracted from frozen fecal samples and sequenced with an Illumina MiSeq System. Our results demonstrated that the SP and SB treatments attenuated hyperalgesia and pain following NTG injection. Moreover, SP and SB reduced histological damage in the intestine and restored intestinal permeability and the intestinal microbiota profile. These results provide corroborating evidence that SB and SP exert a protective effect on central sensitization induced by NTG through a modulation of intestinal microbiota, suggesting the potential application of SCFAs as novel supportive therapies for intestinal disfunction associated with migraine.  相似文献   
63.
A new chiral stationary phase for ultrahigh-pressure liquid chromatography (UHPLC) applications was prepared by covalent attachment of the Whelk-O1 selector to spherical, high-surface-area 1.7-μm porous silica particles. Columns of varying dimensions (lengths of 50, 75, 100, and 150 mm and internal diameters of 3.0 or 4.6 mm) were packed and characterized in terms of permeability, efficiency, retention, and enantioselectivity, using both organic and water-rich mobile phases. A conventional HPLC Whelk-O1 column based on 5.0-μm porous silica particles and packed in a 250 mm × 4.6 mm column was used as a reference. Van Deemter curves, generated with low-molecular-weight solutes on a 100 mm × 4.6 mm column packed with the 1.7-μm particles, showed H(min) (μm) and μ(opt) (mm/s) values of 4.10 and 5.22 under normal-phase and 3.74 and 4.34 under reversed-phase elution conditions. The flat C term of the van Deemter curves observed with the 1.7-μm particles allowed the use of higher-than-optimal flow rates without significant efficiency loss. Kinetic plots constructed from van Deemter data confirmed the ability of the column packed with the 1.7-μm particles to afford subminute separations with good efficiency and its superior performances in the high-speed regime, compared to the column packed with 5.0-μm particles. Resolutions in the time scale of seconds were obtained using a 50-mm-long column in the normal phase or polar organic mode. The intrinsic kinetic performances of 1.7-μm silica particles are retained in the Whelk-O1 chiral stationary phase, clearly demonstrating the potentials of enantioselective UHPLC in terms of high speed, throughput, and resolution.  相似文献   
64.
65.
Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)y1 zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening.  相似文献   
66.
There is a huge need for novel therapeutic and preventative approaches to Alzheimer’s disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness’s later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aβ) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aβ/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.  相似文献   
67.
GLUT1 deficiency syndrome (GLUT1DS1; OMIM #606777) is a rare genetic metabolic disease, characterized by infantile-onset epileptic encephalopathy, global developmental delay, progressive microcephaly, and movement disorders (e.g., spasticity and dystonia). It is caused by heterozygous mutations in the SLC2A1 gene, which encodes the GLUT1 protein, a glucose transporter across the blood-brain barrier (BBB). Most commonly, these variants arise de novo resulting in sporadic cases, although several familial cases with AD inheritance pattern have been described. Twenty-seven Italian pediatric patients, clinically suspect of GLUT1DS from both sporadic and familial cases, have been enrolled. We detected by trios sequencing analysis 25 different variants causing GLUT1DS. Of these, 40% of the identified variants (10 out of 25) had never been reported before, including missense, frameshift, and splice site variants. Their structural mapping on the X-ray structure of GLUT1 strongly suggested the potential pathogenic effects of these novel disease-related mutations, broadening the genotypic spectrum heterogeneity found in the SLC2A1 gene. Moreover, 24% is located in a vulnerable region of the GLUT1 protein that involves transmembrane 4 and 5 helices encoded by exon 4, confirming a mutational hotspot in the SLC2A1 gene. Lastly, we investigated possible correlations between mutation type and clinical and biochemical data observed in our GLUT1DS cohort, revealing that splice site and frameshift variants are related to a more severe phenotype and low CSF parameters.  相似文献   
68.
Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.  相似文献   
69.
We evaluated the relevance of plasma homocysteine (HC) and the TT genotype of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism (rs1801133) in sickle cell disease (SCD) and associated vaso-occlusive crisis (VOC) and ischemic stroke (IS). We identified in Embase and Medline 22 studies on plasma HC and 22 on MTHFR genotypes. Due to age-related HC differences, adult and paediatric SCD were separated: 879 adult SCD and 834 controls (CTR) yielded a neutral effect size; 427 paediatric SCD and 625 CTR favoured SCD (p = 0.001) with wide heterogeneity (I2 = 95.5%) and were sub-grouped by country: six studies (Dutch Antilles n = 1, USA n = 5) yielded a neutral effect size, four (India n = 1, Arab countries n = 3) favoured SCD (p < 0.0001). Moreover, 249 SCD in VOC and 419 out of VOC yielded a neutral effect size. The pooled prevalence of the MTHFR TT genotype in 267 SCD equalled that of 1199 CTR (4.26% vs. 2.86%, p = 0.45), and in 84 SCD with IS equalled that of 86 without IS (5.9% vs. 3.7%, p = 0.47); removal of one paediatric study yielded a significant effect size (p = 0.006). Plasma HC in paediatric SCD from Middle East and India was higher, possibly due to vitamin deficiencies. Despite its low prevalence in SCD, the MTHFR TT genotype relates to adult IS.  相似文献   
70.
Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a–h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号