首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   18篇
电工技术   1篇
化学工业   196篇
金属工艺   4篇
机械仪表   7篇
建筑科学   6篇
能源动力   14篇
轻工业   34篇
水利工程   4篇
无线电   13篇
一般工业技术   41篇
冶金工业   36篇
自动化技术   34篇
  2024年   3篇
  2023年   13篇
  2022年   66篇
  2021年   64篇
  2020年   15篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   17篇
  2015年   7篇
  2014年   9篇
  2013年   15篇
  2012年   19篇
  2011年   19篇
  2010年   15篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   10篇
  1997年   8篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1940年   1篇
排序方式: 共有390条查询结果,搜索用时 0 毫秒
81.
The endoplasmic reticulum (ER) is a dynamic structure, playing multiple roles including calcium storage, protein synthesis and lipid metabolism. During cellular stress, variations in ER homeostasis and its functioning occur. This condition is referred as ER stress and generates a cascade of signaling events termed unfolded protein response (UPR), activated as adaptative response to mitigate the ER stress condition. In this regard, calcium levels play a pivotal role in ER homeostasis and therefore in cell fate regulation since calcium signaling is implicated in a plethora of physiological processes, but also in disease conditions such as neurodegeneration, cancer and metabolic disorders. A large body of emerging evidence highlighted the functional role of TRP channels and their ability to promote cell survival or death depending on endoplasmic reticulum stress resolution, making them an attractive target. Thus, in this review we focused on the TRP channels’ correlation to UPR-mediated ER stress in disease pathogenesis, providing an overview of their implication in the activation of this cellular response.  相似文献   
82.
83.
The nucleotide analog sofosbuvir, licensed for the treatment of hepatitis C, recently revealed activity against the Zika virus (ZIKV) in vitro and in animal models. However, the ZIKV genetic barrier to sofosbuvir has not yet been characterized. In this study, in vitro selection experiments were performed in infected human hepatoma cell lines. Increasing drug pressure significantly delayed viral breakthrough (p = 0.029). A double mutant in the NS5 gene (V360L/V607I) emerged in 3 independent experiments at 40–80 µM sofosbuvir resulting in a 3.9 ± 0.9-fold half- maximal inhibitory concentration (IC50) shift with respect to the wild type (WT) virus. A triple mutant (C269Y/V360L/V607I), detected in one experiment at 80 µM, conferred a 6.8-fold IC50 shift with respect to the WT. Molecular dynamics simulations confirmed that the double mutant V360L/V607I impacts the binding mode of sofosbuvir, supporting its role in sofosbuvir resistance. Due to the distance from the catalytic site and to the lack of reliable structural data, the contribution of C269Y was not investigated in silico. By a combination of sequence analysis, phenotypic susceptibility testing, and molecular modeling, we characterized a double ZIKV NS5 mutant with decreased sofosbuvir susceptibility. These data add important information to the profile of sofosbuvir as a possible lead for anti-ZIKV drug development.  相似文献   
84.
85.
Mercury (Hg) is an environmental pollutant that impacts human and ecosystem health. In our previous works, we reported alterations in the properties of Mytilus galloprovincialis protamine-like (PL) proteins after 24 h of exposure to subtoxic doses of toxic metals such as copper and cadmium. The present work aims to assess the effects of 24 h of exposure to 1, 10, and 100 pM HgCl2 on spermatozoa and PL proteins of Mytilus galloprovincialis. Inductively coupled plasma–mass spectrometry indicated accumulation of this metal in the gonads of exposed mussels. Further, RT-qPCR analyses showed altered expression levels of spermatozoa mt10 and hsp70 genes. In Mytilus galloprovincialis, PL proteins represent the major basic component of sperm chromatin. These proteins, following exposure of mussels to HgCl2, appeared, by SDS-PAGE, partly as aggregates and showed a decreased DNA-binding capacity that rendered them unable to prevent DNA damage, in the presence of CuCl2 and H2O2. These results demonstrate that even these doses of HgCl2 exposure could affect the properties of PL proteins and result in adverse effects on the reproductive system of this organism. These analyses could be useful in developing rapid and efficient chromatin-based genotoxicity assays for pollution biomonitoring programs.  相似文献   
86.
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18–25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes’ expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.  相似文献   
87.
The formal asymmetric and stereodivergent enzymatic reduction of α-angelica lactone to both enantiomers of γ-valerolactone was achieved in a one-pot cascade by uniting the promiscuous stereoselective isomerization activity of Old Yellow Enzymes with their native reductase activity. In addition to running the cascade with one enzyme for each catalytic step, a bifunctional isomerase-reductase biocatalyst was designed by fusing two Old Yellow Enzymes, thereby generating an unprecedented case of an artificial enzyme catalyzing the reduction of nonactivated C=C bonds to access (R)-valerolactone in overall 41 % conversion and up to 91 % ee. The enzyme BfOYE4 could be used as single biocatalyst for both steps and delivered (S)-valerolactone in up to 84 % ee and 41 % overall conversion. The reducing equivalents were provided by a nicotinamide recycling system based on formate and formate dehydrogenase, added in a second step. This enzymatic system provides an asymmetric route to valuable chiral building blocks from an abundant bio-based chemical.  相似文献   
88.
89.
Palmitoylethanolamide (PEA) belongs to the class of N-acylethanolamine and is an endogenous lipid potentially useful in a wide range of therapeutic areas; products containing PEA are licensed for use in humans as a nutraceutical, a food supplement, or food for medical purposes for its analgesic and anti-inflammatory properties demonstrating efficacy and tolerability. However, the exogenously administered PEA is rapidly inactivated; in this process, fatty acid amide hydrolase (FAAH) plays a key role both in hepatic metabolism and in intracellular degradation. So, the aim of the present study was the design and synthesis of PEA analogues that are more resistant to FAAH-mediated hydrolysis. A small library of PEA analogues was designed and tested by molecular docking and density functional theory calculations to find the more stable analogue. The computational investigation identified RePEA as the best candidate in terms of both synthetic accessibility and metabolic stability to FAAH-mediated hydrolysis. The selected compound was synthesized and assayed ex vivo to monitor FAAH-mediated hydrolysis and to confirm its anti-inflammatory properties. 1H-NMR spectroscopy performed on membrane samples containing FAAH in integral membrane protein demonstrated that RePEA is not processed by FAAH, in contrast with PEA. Moreover, RePEA retains PEA’s ability to inhibit LPS-induced cytokine release in both murine N9 microglial cells and human PMA-THP-1 cells.  相似文献   
90.
Lung cancer represents an extremely diffused neoplastic disorder with different histological/molecular features. Among the different lung tumors, non-small-cell lung cancer (NSCLC) is the most represented histotype, characterized by various molecular markers, including the expression/overexpression of the fibroblast growth factor receptor-1 (FGFR1). Thus, FGF/FGFR blockade by tyrosine kinase inhibitors (TKi) or FGF-ligand inhibitors may represent a promising therapeutic approach in lung cancers. In this study we demonstrate the potential therapeutic benefit of targeting the FGF/FGFR system in FGF-dependent lung tumor cells using FGF trapping (NSC12) or TKi (erdafitinib) approaches. The results show that inhibition of FGF/FGFR by NSC12 or erdafitinib induces apoptosis in FGF-dependent human squamous cell carcinoma NCI-H1581 and NCI-H520 cells. Induction of oxidative stress is the main mechanism responsible for the therapeutic/pro-apoptotic effect exerted by both NSC12 and erdafitinib, with apoptosis being abolished by antioxidant treatments. Finally, reduction of c-Myc protein levels appears to strictly determine the onset of oxidative stress and the therapeutic response to FGF/FGFR inhibition, indicating c-Myc as a key downstream effector of FGF/FGFR signaling in FGF-dependent lung cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号