首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185580篇
  免费   2676篇
  国内免费   719篇
电工技术   3424篇
综合类   122篇
化学工业   30113篇
金属工艺   7932篇
机械仪表   5305篇
建筑科学   4721篇
矿业工程   913篇
能源动力   4892篇
轻工业   16760篇
水利工程   1770篇
石油天然气   3155篇
武器工业   2篇
无线电   20561篇
一般工业技术   35516篇
冶金工业   34019篇
原子能技术   4373篇
自动化技术   15397篇
  2021年   1717篇
  2019年   1479篇
  2018年   2386篇
  2017年   2322篇
  2016年   2521篇
  2015年   1849篇
  2014年   3134篇
  2013年   8305篇
  2012年   5077篇
  2011年   6965篇
  2010年   5437篇
  2009年   6275篇
  2008年   6277篇
  2007年   6242篇
  2006年   5323篇
  2005年   4927篇
  2004年   4677篇
  2003年   4338篇
  2002年   4283篇
  2001年   4239篇
  2000年   4029篇
  1999年   4170篇
  1998年   10560篇
  1997年   7536篇
  1996年   5748篇
  1995年   4359篇
  1994年   3686篇
  1993年   3649篇
  1992年   2655篇
  1991年   2583篇
  1990年   2463篇
  1989年   2469篇
  1988年   2417篇
  1987年   2163篇
  1986年   2096篇
  1985年   2406篇
  1984年   2219篇
  1983年   2043篇
  1982年   1904篇
  1981年   1971篇
  1980年   1820篇
  1979年   1834篇
  1978年   1801篇
  1977年   2130篇
  1976年   2744篇
  1975年   1583篇
  1974年   1564篇
  1973年   1618篇
  1972年   1362篇
  1971年   1276篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine, which supports the activation of coagulation factor proteins. On the other hand, the coagulation cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed that the ‘supernatant of (hirudin-treated) coagulated plasma’ (SCP) enhanced CRP-XL-induced platelet responses, i.e., integrin αIIbβ3 activation, P-selectin exposure and aggregate formation. We demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation, factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.  相似文献   
102.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells’ microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.  相似文献   
103.
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite–mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of −1 ± 1 mV and −7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL−1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1β, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1–10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin–vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.  相似文献   
104.
The inhibitory potency of the series of inhibitors of the soluble epoxide hydrolase (sEH) based on the selenourea moiety and containing adamantane and aromatic lipophilic groups ranges from 34.3 nM to 1.2 μM. The most active compound 5d possesses aliphatic spacers between the selenourea group and lipophilic fragments. Synthesized compounds were tested against the LPS-induced activation of primary murine macrophages. The most prominent anti-inflammatory activity, defined as a suppression of nitric oxide synthesis by LPS-stimulated macrophages, was demonstrated for compounds 4a and 5b. The cytotoxicity of the obtained substances was studied using human neuroblastoma and fibroblast cell cultures. Using these cell assays, the cytotoxic concentration for 4a was 4.7–18.4 times higher than the effective anti-inflammatory concentration. The genotoxicity and the ability to induce oxidative stress was studied using bacterial lux-biosensors. Substance 4a does not exhibit genotoxic properties, but it can cause oxidative stress at concentrations above 50 µM. Put together, the data showed the efficacy and safety of compound 4a.  相似文献   
105.
The structure, thermodynamic parameters, and the character of thermal motion in octamethylcyclotetrasiloxane (D4) were investigated using the combination of experimental (single-crystal X-ray diffraction, thermochemistry) and theoretical (density functional theory calculations, ab initio molecular dynamics and metadynamics) methods. Single crystals of D4 were grown in a glass capillary in situ and the structures of high- (238–270 K) and low-temperature (100–230 K) phases were studied in detail. In the temperature interval 230–238 K, a phase transition with rather low enthalpy (−1.04(7) kcal/mol) was detected. It was found that phase transition is accompanied by change of conformation of cyclosiloxane moiety from boat-saddle (cradle) to chair. According to PBE0/6-311G(d,p) calculation of isolated D4, such conformation changes are characterized by a low barrier (0.07 kcal/mol). The character of molecular thermal motion and the path of phase transition were established with combination of periodic DFT calculations, including molecular dynamics and metadynamics. The effect of crystal field led to an increase in the calculated phase transition barrier (4.27 kcal/mol from low- to high-temperature phase and 3.20 kcal/mol in opposite direction).  相似文献   
106.
107.
The voltage-dependent anion channel (VDAC) is the main passageway for ions and metabolites over the outer mitochondrial membrane. It was associated with many physiological processes, including apoptosis and modulation of intracellular Ca2+ signaling. The protein is formed by a barrel of 19 beta-sheets with an N-terminal helix lining the inner pore. Despite its large diameter, the channel can change its selectivity for ions and metabolites based on its open state to regulate transport into and out of mitochondria. VDAC was shown to be regulated by a variety of cellular factors and molecular partners including proteins, lipids and ions. Although the physiological importance of many of these modulatory effects are well described, the binding sites for molecular partners are still largely unknown. The highly symmetrical and sleek structure of the channel makes predictions of functional moieties difficult. However, one residue repeatedly sticks out when reviewing VDAC literature. A glutamate at position 73 (E73) located on the outside of the channel facing the hydrophobic membrane environment was repeatedly proposed to be involved in channel regulation on multiple levels. Here, we review the distinct hypothesized roles of E73 and summarize the open questions around this mysterious residue.  相似文献   
108.
Meningiomas (MGMs) are currently classified into grades I, II, and III. High-grade tumors are correlated with decreased survival rates and increased recurrence rates. The current grading classification is based on histological criteria and determined only after surgical tumor sampling. This study aimed to identify plasma metabolic alterations in meningiomas of different grades, which would aid surgeons in predefining the ideal surgical strategy. Plasma samples were collected from 51 patients with meningioma and classified into low-grade (LG) (grade I; n = 43), and high-grade (HG) samples (grade II, n = 5; grade III, n = 3). An untargeted metabolomic approach was used to analyze plasma metabolites. Statistical analyses were performed to select differential biomarkers among HG and LG groups. Metabolites were identified using tandem mass spectrometry along with database verification. Five and four differential biomarkers were identified for HG and LG meningiomas, respectively. To evaluate the potential of HG MGM metabolites to differentiate between HG and LG tumors, a receiving operating characteristic curve was constructed, which revealed an area under the curve of 95.7%. This indicates that the five HG MGM metabolites represent metabolic alterations that can differentiate between LG and HG meningiomas. These metabolites may indicate tumor grade even before the appearance of histological features.  相似文献   
109.
Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interesting agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.  相似文献   
110.
Scientists have long established that fatty acids are the primary substrates for kidney mitochondria. However, to date we still do not know how long-chain and middle-chain fatty acids are oxidized at the mitochondrial level. Our previous research has shown that mitochondria from the heart, brain, and kidney oxidize palmitoylcarnitine at a high rate only in the presence of succinate, glutamate, or pyruvate. In this paper, we report properties of the isolated kidney mitochondria and how malate and succinate affect the oxidation of C16 and C8 acylcarnitines. The isolated kidney mitochondria contain very few endogenous substrates and require malate to oxidize pyruvate, glutamate, and C16 or C8 acylcarnitines. We discovered that with 10 µM of C16 or C8 acylcarnitines, low concentrations of malate (0.2 mM) or succinate (0.5 mM) enhance the States 4 and 3 respiratory rates several times. The highest respiration rates were observed with C16 or C8 acylcarnitines and 5 mM succinate mixtures. Results show that kidney mitochondria, unlike the heart and brain mitochondria, lack the intrinsic inhibition of succinate dehydrogenase. Additionally, results show that the oxidation of fatty acid by the small respirasome’s supercomplex generates a high level of CoQH2, and this makes SDH in the presence of succinate reverse the flow of electrons from CoQH2 to reduce fumarate to succinate. Finally, we report evidence that succinate dehydrogenase is a key mitochondrial enzyme that allows fast oxidation of fatty acids and turns the TCA cycle function from the catabolic to the anabolic and anaplerotic metabolic pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号