首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   120篇
  国内免费   1篇
电工技术   16篇
化学工业   436篇
金属工艺   46篇
机械仪表   78篇
建筑科学   28篇
能源动力   90篇
轻工业   178篇
水利工程   18篇
石油天然气   3篇
无线电   136篇
一般工业技术   382篇
冶金工业   78篇
原子能技术   9篇
自动化技术   409篇
  2024年   2篇
  2023年   25篇
  2022年   64篇
  2021年   83篇
  2020年   63篇
  2019年   61篇
  2018年   73篇
  2017年   63篇
  2016年   99篇
  2015年   75篇
  2014年   95篇
  2013年   162篇
  2012年   155篇
  2011年   167篇
  2010年   114篇
  2009年   80篇
  2008年   95篇
  2007年   85篇
  2006年   63篇
  2005年   44篇
  2004年   46篇
  2003年   25篇
  2002年   43篇
  2001年   19篇
  2000年   7篇
  1999年   5篇
  1998年   14篇
  1997年   11篇
  1996年   16篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1977年   4篇
  1976年   1篇
  1972年   1篇
  1957年   1篇
排序方式: 共有1907条查询结果,搜索用时 0 毫秒
21.
The specification of quality of service (QoS) requirements in most of the existing networks is still challenging. In part, traditional network environments are limited by their high administrative cost, although software-defined networks (SDNs), a newer network paradigm, simplify the management of the whole network infrastructure. In fact, SDN provides a simple way to effectively develop QoS provisioning mechanisms. In this sense, we explore the SDN model and its flexibility to develop a QoS provisioning architecture. Through the use of our new architecture, network operators are able to specify QoS levels in a simple way. Each individual data flow can be addressed, and the architecture we propose also negotiates the QoS requirements between the network controller and applications. On the other hand, the network controller continuously monitors the network environment. Then, it allocates network elements resources and prioritizes traffic, adjusting the network performance. We evaluate the feasibility of our QoS provisioning mechanism by presenting three experimental setups under realistic scenarios. For example, for a given scenario where we evaluate file transfers, our results indicate that the additional SDN modules present negligible overhead. Moreover, for a given setup, we observe a reduction of up to 82% in the file transfer times.  相似文献   
22.
Some mechanisms of charge transport in organic semiconductors and organic photovoltaic (OPV) cells can be distinguished by their predicted change in activation energy for the current, Ea, versus applied field, F. Ea versus F is measured first in pure films of commercially available regioregular poly(3‐hexylthiophene) (P3HT) and in the same P3HT treated to reduce its charged defect density. The former shows a Poole–Frenkel (PF)‐like decrease in Ea at low F, which then plateaus at higher F. The low defect material does not exhibit PF behavior and Ea remains approximately constant. Upon addition of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), however, both materials show a large increase in Ea and exhibit PF‐like behavior over the entire field range. These results are explained with a previously proposed model of transport that considers both the localized random disorder in the energy levels and the long‐range electrostatic fluctuations resulting from charged defects. Activation energy spectra in working OPV cells show that the current is injection‐limited over most of the voltage range but becomes transport‐limited, with a large peak in Ea, near the open circuit photovoltage. This causes a decrease in fill factor, which may be a general limitation in such solar cells.  相似文献   
23.
In this fast communication, we derive the statistical resolution limit (SRL), characterizing the minimal parameter separation, to resolve two closely spaced known near-field sources impinging on a linear array. Toward this goal, we conduct on the first-order Taylor expansion of the observation model a Generalized Likelihood Ratio Test (GLRT) based on a Constrained Maximum Likelihood Estimator (CMLE) of the SRL. More precisely, the minimum separation between two near-field sources, that is detectable for a given probability of false alarm and a given probability of detection, is derived herein. Finally, numerical simulations are done to quantify the impact of the array geometry of the signal sources power distribution and of the array aperture on the statistical resolution limit.  相似文献   
24.
This study presents a methodology for applying the forced-oscillation technique in total liquid ventilation. It mainly consists of applying sinusoidal volumetric excitation to the respiratory system, and determining the transfer function between the delivered flow rate and resulting airway pressure. The investigated frequency range was f ∈ [0.05, 4] Hz at a constant flow amplitude of 7.5 mL/s. The five parameters of a fractional order lung model, the existing "5-parameter constant-phase model," were identified based on measured impedance spectra. The identification method was validated in silico on computer-generated datasets and the overall process was validated in vitro on a simplified single-compartment mechanical lung model. In vivo data on ten newborn lambs suggested the appropriateness of a fractional-order compliance term to the mechanical impedance to describe the low-frequency behavior of the lung, but did not demonstrate the relevance of a fractional-order inertance term. Typical respiratory system frequency response is presented together with statistical data of the measured in vivo impedance model parameters. This information will be useful for both the design of a robust pressure controller for total liquid ventilators and the monitoring of the patient's respiratory parameters during total liquid ventilation treatment.  相似文献   
25.
26.
27.
The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well‐connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash‐photolysis time‐resolved microwave conductivity (TRMC) experiments, and space‐charge‐limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so‐called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self‐assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl‐C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near‐spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.  相似文献   
28.
29.
30.
General purpose graphics processing units (GPGPUs) have gained much popularity in scientific computing to speedup computational intensive workloads. Resource allocation in terms of power and subcarriers assignment, in current wireless standards, is one of the challenging problems due to its high computational complexity requirement. The Hungarian algorithm (HA), which has been extensively applied to linear assignment problems (LAPs), has been seen to provide encouraging result in resource allocation for wireless communication systems. This paper presents a compute unified device architecture (CUDA) implementation of the HA on graphics processing unit (GPU) for this problem. HA has been implemented on a parallel architecture to solve the subcarrier assignment problem and maximize spectral efficiency. The proposed implementation is achieved by using the “Kuhn‐Munkres” algorithm with effective modifications, in order to fully exploit the capabilities of modern GPU devices. A cost matrix for maximum assignment has been defined leading to a low complexity matrix compression along with highly optimized CUDA reduction and parallel alternating path search process. All these optimizations lead to an efficient implementation with superior performance when compared with existing parallel implementations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号