首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   727篇
  免费   56篇
  国内免费   4篇
电工技术   13篇
综合类   2篇
化学工业   284篇
金属工艺   11篇
机械仪表   21篇
建筑科学   5篇
能源动力   32篇
轻工业   22篇
水利工程   4篇
石油天然气   13篇
无线电   64篇
一般工业技术   189篇
冶金工业   11篇
原子能技术   11篇
自动化技术   105篇
  2024年   1篇
  2023年   13篇
  2022年   72篇
  2021年   96篇
  2020年   44篇
  2019年   35篇
  2018年   27篇
  2017年   28篇
  2016年   28篇
  2015年   26篇
  2014年   37篇
  2013年   44篇
  2012年   51篇
  2011年   68篇
  2010年   38篇
  2009年   27篇
  2008年   31篇
  2007年   29篇
  2006年   13篇
  2005年   11篇
  2004年   9篇
  2003年   9篇
  2002年   19篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1987年   1篇
  1984年   1篇
排序方式: 共有787条查询结果,搜索用时 15 毫秒
121.
Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at −196 °C, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10−4 molCO·gAu −1·s−1 at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2–12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10−4 to 7.2 × 10−4 molCO·gAu −1·s−1, at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.   相似文献   
122.
The interaction of sub-picosecond laser pulses with magnetically ordered materials has developed into an extremely exciting research topic in modern magnetism. From the discovery of sub-picosecond demagnetization over a decade ago to the recent demonstration of magnetization reversal by a single 40?fs laser pulse, the manipulation of spins by ultrashort laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation, and quantum computation. We have recently demonstrated that one can generate ultrashort and very strong (teslas) magnetic field pulses via the so-called inverse Faraday effect. Such optically induced magnetic field pulses provide unprecedented means for the generation, manipulation and coherent control of spins on very short time scales. The basic ideas behind these so-called opto-magnetic effects will be discussed and illustrated with recent results, demonstrating the various possibilities of this new field of femto-magnetism.  相似文献   
123.
124.
A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 1015 ions/cm2 was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.  相似文献   
125.
This paper demonstrates an implementation of an asynchronous cellular processor array that facilitates binary trigger‐wave propagations, extensively used in various image‐processing algorithms. The circuit operates in a continuous‐time mode, achieving high operational performance and low‐power consumption. An integrated circuit with proof‐of‐concept array of 24×60 cells has been fabricated in a 0.35µm three‐metal CMOS process and tested. Occupying only 16×8µm2 the binary wave‐propagation cell is designed to be used as a co‐processor in general‐purpose processor‐per‐pixel arrays intended for focal‐plane image processing. The results of global operations such as object reconstruction and hole filling are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
126.
The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech®, and compared to Nafion® membranes. The sHC membranes exhibit lower proton conductivity (25–40 mS cm−1 vs. ∼95–40 mS cm−1 for Nafion®) as well as lower methanol permeability (1.8–3.9 × 10−7 cm2 s−1 vs. 2.4–3.4 × 10−6 cm2 s−1 for Nafion®). Water uptake was similar for all membranes (18–25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion® to 17 wt% for PFSA. The power density of Nafion® in DMFCs at room temperature decreases with membrane thickness from 26 mW cm−2 for Nafion® 117 to 12.5 mW cm−2 for Nafion® 112. The maximum power density of the Fumatech® membranes ranges from 4 to 13 mW cm−1. Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.  相似文献   
127.
Droplets of polymer blends flowing through convergent channels undergo collisions and coalescence because of the appropriate wineglass‐shaped flow paths with essential flow constriction at the entrance zone. Therefore, an attempt has been undertaken to use capillary flow for studying coalescence phenomena in polymer blends. When the initial drop diameters in a barrel (before extrusion), db, and in the extrudate, de, are measured, coalescence efficiency can be easily calculated as Ec = d/d, provided that no breakup of elongated domains occurs. Compared with methods employing simple shear flow, it has several advantages. For example, the convergent flow pattern combining both shear and extensional flows is directly related to industrial processing operations like extrusion, injection molding, blowing, etc. The method imposes minor limitations on processing parameters and materials used. Applicability of the technique proposed was verified by systematic studies of coalescence in PMMA/PS binary melts blends during capillary extrusion and by comparing these results to theoretical predictions and experimental data from literature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
128.
In this study, transparent conducting nanocrystalline ZnO:Ga (GZO) films were deposited by dc magnetron sputtering at room temperature on polymers (and glass for comparison). Electrical resistivities of 8.8 × 10-4 and 2.2 × 10-3 Ω cm were obtained for films deposited on glass and polymers, respectively. The crack onset strain (COS) and the cohesive strength of the coatings were investigated by means of tensile testing. The COS is similar for different GZO coatings and occurs for nominal strains approx. 1%. The cohesive strength of coatings, which was evaluated from the initial part of the crack density evolution, was found to be between 1.3 and 1.4 GPa. For these calculations, a Young's modulus of 112 GPa was used, evaluated by nanoindentation.  相似文献   
129.
Fresh and mildly aged Pt/Al2O3 model diesel oxidation catalysts with small and large noble metal particle size have been studied during CO oxidation under lean burn reaction conditions to gain more insight into the structure and oscillatory reaction behaviour. The catalytic performance, CO adsorption characteristics using in situ DRIFTS and oxidation state using in situ XAS were correlated. Stable and pronounced oscillations only occurred over the catalyst with smaller particle sizes. Characteristic for this catalyst are low-coordinated surface Pt sites (more corner and edge atoms) which seem to become oxidized at elevated temperature as evidenced by in situ DRIFTS and in situ XAS. In situ XAS further uncovered that the oxidation of the Pt surface starts from the end of the catalyst bed and the oxidation state oscillates like the catalytic activity.  相似文献   
130.
In this paper, millimeter-wave imaging of foreign object debris (FOD)-type objects on the ground is studied with the help of ground-based synthetic aperture radar (GB-SAR) technique. To test the feasibility of detecting runway FODs with this technique, some preliminary experiments are conducted within short antenna-to-target ranges of small imaging patches. An automated stripmap GB-SAR system with stepped-frequency transmission is constructed together with a quasi-monostatic data collection operation. The imaging experiments for various braces and screws are then carried out by using 3236?GHz and 9095?GHz frequency bands of the millimeter-wave. Images reconstructed by a matched-filter based algorithm are analyzed to determine the proper system parameters for an efficient imaging and to comprehend the factors against a successful detection. Results demonstrate the capability of GB-SAR imaging in accurately locating these FOD-like targets under near-range operating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号