首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13716篇
  免费   850篇
  国内免费   110篇
电工技术   205篇
综合类   61篇
化学工业   3543篇
金属工艺   347篇
机械仪表   490篇
建筑科学   517篇
矿业工程   21篇
能源动力   957篇
轻工业   1281篇
水利工程   189篇
石油天然气   225篇
武器工业   4篇
无线电   1380篇
一般工业技术   2542篇
冶金工业   493篇
原子能技术   96篇
自动化技术   2325篇
  2024年   70篇
  2023年   268篇
  2022年   588篇
  2021年   894篇
  2020年   752篇
  2019年   814篇
  2018年   916篇
  2017年   829篇
  2016年   808篇
  2015年   476篇
  2014年   751篇
  2013年   1368篇
  2012年   905篇
  2011年   954篇
  2010年   666篇
  2009年   595篇
  2008年   418篇
  2007年   355篇
  2006年   302篇
  2005年   192篇
  2004年   174篇
  2003年   154篇
  2002年   119篇
  2001年   91篇
  2000年   92篇
  1999年   81篇
  1998年   137篇
  1997年   114篇
  1996年   96篇
  1995年   68篇
  1994年   53篇
  1993年   60篇
  1992年   47篇
  1991年   39篇
  1990年   40篇
  1989年   32篇
  1988年   26篇
  1987年   24篇
  1986年   38篇
  1985年   29篇
  1984年   30篇
  1983年   27篇
  1982年   23篇
  1981年   20篇
  1980年   20篇
  1979年   16篇
  1978年   18篇
  1977年   19篇
  1976年   24篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Optical orthogonal frequency division multiplexing (O-OFDM) has been widely adopted as a high-speed data transmission technique in visible light communication systems. This technique usually suffers from high peak-to-average-power ratio (PAPR). In this paper, a new PAPR reduction technique is proposed for O-OFDM signals. At the transmitter, a matrix transformation with the Gaussian elements is applied to the time-domain O-OFDM signal and at the receiver, the inverse matrix is used to recover the original signal. We show that the Gaussian orthogonal matrices can reconstruct the original signals without degrading the bit error rate (BER) performance. Gram-Schmidt technique is used to orthogonalize the Gaussian matrices. Computer simulations are conducted for 16-QAM baseband modulated symbols and about 3 dB PAPR reduction gain is achieved by the proposed approach compared with conventional O-OFDM.  相似文献   
62.
Today, cloud computing has developed as one of the important emergent technologies in communication and Internet. It offers on demand, pay per use access to infrastructure, platforms, and applications. Due to the increase in its popularity, the huge number of requests need to be handled in an efficient manner. Task scheduling as one of the challenges in the cloud computing supports the requests for assigning a particular resource so as to perform effectively. In the resource management, task scheduling is performed where there is the dependency between tasks. Many approaches and case studies have been developed for the scheduling of these tasks. Up to now, a systematic literature review (SLR) has not been presented to discover and evaluate the task scheduling approaches in the cloud computing environment. To overcome, this paper presents an SLR‐based analysis on the task scheduling approaches that classify into (a) single cloud environments that evaluate cost‐aware, energy‐aware, multi‐objective, and QoS‐aware approaches in task scheduling; (b) multicloud environment that evaluates cost‐aware, multi‐objective, and QoS‐aware task scheduling; and (c) mobile cloud environment that is energy‐aware and QoS‐aware task scheduling. The analytical discussions are provided to show the advantages and limitations of the existing approaches.  相似文献   
63.
Along with expansion in using of Internet and computer networks, the privacy, integrity, and access to digital resources have been faced with permanent risks. Due to the unpredictable behavior of network, the nonlinear nature of intrusion attempts, and the vast number of features in the problem environment, intrusion detection system (IDS) is regarded as the main problem in the security of computer networks. A feature selection technique helps to reduce complexity in terms of both the executive load and the storage by selecting the optimal subset of features. The purpose of this study is to identify important and key features in building an IDS. To improve the performance of IDS, this paper proposes an IDS that its features are optimally selected using a new hybrid method based on fruit fly algorithm (FFA) and ant lion optimizer (ALO) algorithm. The simulation results on the dataset KDD Cup99, NSL‐KDD, and UNSW‐NB15 have shown that the FFA–ALO has an acceptable performance according to the evaluation criteria such as accuracy and sensitivity than previous approaches.  相似文献   
64.
This paper presents a fully integrated, low transmit-power and high-efficiency 2.4 GHz class-E power amplifier (PA) in TSMC 0.18 μm CMOS process for low-power transmitters such as wireless sensor networks (WSN). In this paper, a new output load has been proposed. Also, analytical design equations have been included to design an efficient low power circuit. This PA, employs the pad capacitance and bond-wire inductance of the output node, for satisfying class-E zero-voltage switching (ZVS) condition and matching the antenna’s 50 Ω resistance. By using bond-wire inductance instead of inductor in the output filter, smaller chip size and higher efficiency has been achieved compared to other works for low transmit-power applications. Also, the effectiveness of bulk-drive technique on faster switching and increasing efficiency have been evaluated. It has been proved that this technique leads to increase the efficiency of switching PAs. This PA delivers a range of output power from 2.7 to 7.2 dBm with a supply voltage range from 500 to 850 mV while achieving overall power efficiency range of 57.3–60.7%.  相似文献   
65.
Nitrogen‐rich solid absorbents, which have been immensely tested for carbon dioxide capture, seem until this date to be without decisive molecular engineering or design rules. Here, a family of cyanovinylene‐based microporous polymers synthesized under metal‐catalyzed conditions is reported as a promising candidate for advanced carbon capture materials. These networks reveal that isosteric heats of CO2 adsorption are directly proportional to the amount of their functional group. Motivated by this finding, polymers produced under base‐catalyzed conditions with tailored quantities of cyanovinyl content confirm the systematical tuning of their sorption enthalpies to reach 40 kJ mol?1. This value is among the highest reported to date in carbonaceous networks undergoing physisorption. A six‐point‐plot reveals that the structure–thermodynamic‐property relationship is linearly proportional and can thus be perfectly fitted to tailor‐made values prior to experimental measurements. Dynamic simulations show a bowl‐shaped region within which CO2 is able to sit and interact with its conjugated surrounding, while theoretical calculations confirm the increase of binding sites with the increase of Ph? C?C(CN)? Ph functionality in a network. This concept presents a distinct method for the future design of carbon dioxide capturing materials.  相似文献   
66.
This paper presents a comparative study of susceptibility reduction techniques for electromagnetic interference (EMI) in digital integrated circuits (ICs). Both direct power injection (DPI) and very-fast transmission-line pulsing (VF-TLP) methods are used to inject interference into the substrate of a single test chip. This IC is built around six functionally identical cores, differing only by their EMI protection strategies (RC protection, isolated substrate, meshed power supply network) which were initially designed for low emission design rules. The ranking of three of these cores in terms of electromagnetic immunity is then compared with the one of their radiated emission, thanks to near-field scanning (NFS) measurements. This leads to the establishing of design guidelines for low EMI in digital ICs.  相似文献   
67.
68.
Wireless Personal Communications - The development of Smart Home Controllers has seen rapid growth in recent years, especially for smart devices, that can utilize the Internet of Things (IoT)....  相似文献   
69.
Semiconductors - Abstract—In our work, we carry out a structural-spectroscopic study of AlGaN/GaN epitaxial layers grown by molecular-beam epitaxy with nitrogen-plasma activation on a hybrid...  相似文献   
70.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号