首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13781篇
  免费   860篇
  国内免费   112篇
电工技术   207篇
综合类   61篇
化学工业   3583篇
金属工艺   357篇
机械仪表   502篇
建筑科学   519篇
矿业工程   21篇
能源动力   959篇
轻工业   1279篇
水利工程   189篇
石油天然气   229篇
武器工业   4篇
无线电   1381篇
一般工业技术   2540篇
冶金工业   493篇
原子能技术   96篇
自动化技术   2333篇
  2024年   72篇
  2023年   269篇
  2022年   589篇
  2021年   901篇
  2020年   755篇
  2019年   817篇
  2018年   918篇
  2017年   839篇
  2016年   819篇
  2015年   480篇
  2014年   759篇
  2013年   1383篇
  2012年   913篇
  2011年   955篇
  2010年   668篇
  2009年   599篇
  2008年   421篇
  2007年   364篇
  2006年   306篇
  2005年   192篇
  2004年   175篇
  2003年   153篇
  2002年   121篇
  2001年   91篇
  2000年   91篇
  1999年   81篇
  1998年   137篇
  1997年   114篇
  1996年   96篇
  1995年   68篇
  1994年   51篇
  1993年   59篇
  1992年   46篇
  1991年   38篇
  1990年   40篇
  1989年   32篇
  1988年   25篇
  1987年   24篇
  1986年   34篇
  1985年   27篇
  1984年   27篇
  1983年   25篇
  1982年   21篇
  1981年   19篇
  1980年   19篇
  1979年   16篇
  1978年   18篇
  1977年   18篇
  1976年   24篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
This paper presents a fully integrated, low transmit-power and high-efficiency 2.4 GHz class-E power amplifier (PA) in TSMC 0.18 μm CMOS process for low-power transmitters such as wireless sensor networks (WSN). In this paper, a new output load has been proposed. Also, analytical design equations have been included to design an efficient low power circuit. This PA, employs the pad capacitance and bond-wire inductance of the output node, for satisfying class-E zero-voltage switching (ZVS) condition and matching the antenna’s 50 Ω resistance. By using bond-wire inductance instead of inductor in the output filter, smaller chip size and higher efficiency has been achieved compared to other works for low transmit-power applications. Also, the effectiveness of bulk-drive technique on faster switching and increasing efficiency have been evaluated. It has been proved that this technique leads to increase the efficiency of switching PAs. This PA delivers a range of output power from 2.7 to 7.2 dBm with a supply voltage range from 500 to 850 mV while achieving overall power efficiency range of 57.3–60.7%.  相似文献   
72.
Nitrogen‐rich solid absorbents, which have been immensely tested for carbon dioxide capture, seem until this date to be without decisive molecular engineering or design rules. Here, a family of cyanovinylene‐based microporous polymers synthesized under metal‐catalyzed conditions is reported as a promising candidate for advanced carbon capture materials. These networks reveal that isosteric heats of CO2 adsorption are directly proportional to the amount of their functional group. Motivated by this finding, polymers produced under base‐catalyzed conditions with tailored quantities of cyanovinyl content confirm the systematical tuning of their sorption enthalpies to reach 40 kJ mol?1. This value is among the highest reported to date in carbonaceous networks undergoing physisorption. A six‐point‐plot reveals that the structure–thermodynamic‐property relationship is linearly proportional and can thus be perfectly fitted to tailor‐made values prior to experimental measurements. Dynamic simulations show a bowl‐shaped region within which CO2 is able to sit and interact with its conjugated surrounding, while theoretical calculations confirm the increase of binding sites with the increase of Ph? C?C(CN)? Ph functionality in a network. This concept presents a distinct method for the future design of carbon dioxide capturing materials.  相似文献   
73.
This paper presents a comparative study of susceptibility reduction techniques for electromagnetic interference (EMI) in digital integrated circuits (ICs). Both direct power injection (DPI) and very-fast transmission-line pulsing (VF-TLP) methods are used to inject interference into the substrate of a single test chip. This IC is built around six functionally identical cores, differing only by their EMI protection strategies (RC protection, isolated substrate, meshed power supply network) which were initially designed for low emission design rules. The ranking of three of these cores in terms of electromagnetic immunity is then compared with the one of their radiated emission, thanks to near-field scanning (NFS) measurements. This leads to the establishing of design guidelines for low EMI in digital ICs.  相似文献   
74.
75.
Wireless Personal Communications - The development of Smart Home Controllers has seen rapid growth in recent years, especially for smart devices, that can utilize the Internet of Things (IoT)....  相似文献   
76.
Semiconductors - Abstract—In our work, we carry out a structural-spectroscopic study of AlGaN/GaN epitaxial layers grown by molecular-beam epitaxy with nitrogen-plasma activation on a hybrid...  相似文献   
77.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
78.
Cobalt ferrite nanoparticles were synthesized by a reverse micelle process. The optimum processing conditions required to fabricate nanocrystalline cobalt ferrite using a reverse micelle technique, especially the effect of water-to-surfactant molar ratios including w = 8, 10, 12, and 14, pH values in the range of 8 to 11, and annealing temperatures in the range of 400°C to 800°C, were evaluated. x-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), vibrating-sample magnetometry, and superconducting quantum interference device analysis were employed to evaluate the structural and magnetic properties of synthesized nanoparticles. XRD analysis confirms that the nanoparticles have a single-phase cubic spinel structure. The average particle size increases with increasing pH value and annealing temperature. Magnetization study reveals that the cobalt ferrite nanoparticles exhibit a superparamagnetic trend. The zero-field-cooled magnetization curves of cobalt ferrite nanoparticles indicated that, with an increase in pH value, the blocking temperature increases. Based on the obtained optimum parameters, terbium-substituted cobalt ferrite nanoparticles with composition CoFe2?x Tb x O4 (x = 0.1 to 0.5) were prepared by a reverse micelle process. XRD and field-emission scanning electron microscopy evaluation demonstrated that single-phase spinel ferrites with narrow size distribution were obtained. Mössbauer spectroscopy was used to determine the site preference of terbium cation. The results confirm that terbium cations were distributed at tetrahedral and octahedral sites, but with a preference for the former. It was observed that, with an increase in terbium content, the saturation magnetization increases.  相似文献   
79.
In the present study, Zr x La1?x O y amorphous nanostructures were prepared by the sol–gel method such that the Zr atomic fraction (x) ranged from 0% to 70%. An analytical model is described for the dielectric constant (k) of Zr x La1?x O y nanostructures in a metal–oxide–semiconductor (MOS) device. The structure and morphology of Zr x La1?x O y film was studied using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Elemental qualitative analysis was performed using energy-dispersive x-ray spectra and a map that confirmed the findings. Preliminary information on the influence of thermal annealing on the morphological control of Zr x La1?x O y amorphous nanostructures is presented. The dielectric constant of the crystalline Zr0.5La0.5O y thin film is about 36. Electrical property characterization was performed using a metal–dielectric–semiconductor structure via capacitance–voltage and current density–voltage measurements.  相似文献   
80.
Thermal noise is one of the most important challenges in analogue integrated circuits design. This problem is more crucial in switched-capacitor (SC) filters due to the aliasing effect of wide-band thermal noise. In this article, a new simple method is proposed for estimating the power spectrum density of output thermal noise in SC filters, which have acceptable accuracy and short running time. In the proposed method, first using HSPICE simulator, accurate value of accumulated sampled noise on sampler capacitors in each clock state is achieved. Next, using difference equations of the SC filter, frequency response of the SC filter is shaped by time domain analysis. Based on the proposed method, a SC low-pass filter and a second-order SC band-pass filter are analysed. The results are validated by comparing to the previously measured data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号