首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   40篇
  国内免费   1篇
电工技术   3篇
化学工业   219篇
金属工艺   7篇
机械仪表   6篇
建筑科学   14篇
能源动力   10篇
轻工业   55篇
水利工程   1篇
石油天然气   2篇
无线电   33篇
一般工业技术   81篇
冶金工业   7篇
自动化技术   60篇
  2023年   12篇
  2022年   56篇
  2021年   58篇
  2020年   19篇
  2019年   19篇
  2018年   22篇
  2017年   15篇
  2016年   29篇
  2015年   16篇
  2014年   24篇
  2013年   28篇
  2012年   39篇
  2011年   31篇
  2010年   19篇
  2009年   16篇
  2008年   11篇
  2007年   11篇
  2006年   10篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有498条查询结果,搜索用时 375 毫秒
81.
The efficiency of a cosmetic product depends not only on the active ingredients, but also on the carrier system devoted to improve its bioavailability. This article aims to encapsulate two couples of UV molecular absorbers, with a blocking action on both UV-A and UV-B domains, into efficient lipid nanoparticles. The effect of encapsulation on the specific properties such as sun protection factor and photostability behaviour has been demonstrated. The lipid nanoparticles with size range 30-350 nm and a polydispersity index between 0.217 and 0.244 are obtained using a modified high shear homogenisation method. The nanoparticles had spherical shapes with a single crystallisation form of lipid matrices characteristic for the least ordered crystal structure (α-form). The in vitro determination of photoprotection has led to high SPF ratings, with values of about 20, which assure a good photoprotection and filtering about 95% of UV radiation. The photoprotection effect after irradiation stage was observed to be increased more than twice compared to initial samples as a result of isomerisation phenomena. All the results have shown that good photoprotection effect and improved photostability could be obtained using such sunscreen couples, thus demonstrating that UV absorbers-solid lipid nanoparticles are promising carriers for cosmetic formulations.  相似文献   
82.
We report the synthesis of molecularly imprinted sorbents, selective for gallic acid. The particles were prepared by using acrylic acid, acrylonitrile, and hydroxyethyl methacrylate as functional monomers, whereas ethyleneglycol dimethacrylate and 1,4‐buthanediol dimethacrylate were used as crosslinkers. Preparation and manipulation protocols were adjusted considering template's nature. To highlight the influence of monomer/crosslinker nature upon imprinted particles, the adsorption capacity, the imprinting factor, and the distribution and selectivity coefficients were calculated. An imprinting factor of 3.53 and a selectivity coefficient of 6.86 were found for hydroxyethyl methacrylate/ethylene glycol methacrylate system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci. 2013  相似文献   
83.
Skin aging is associated with the accumulation of senescent cells and is related to many pathological changes, including decreased protection against pathogens, increased susceptibility to irritation, delayed wound healing, and increased cancer susceptibility. Senescent cells secrete a specific set of pro-inflammatory mediators, referred to as a senescence-associated secretory phenotype (SASP), which can cause profound changes in tissue structure and function. Thus, drugs that selectively eliminate senescent cells (senolytics) or neutralize SASP (senostatics) represent an attractive therapeutic strategy for age-associated skin deterioration. There is growing evidence that plant-derived compounds (flavonoids) can slow down or even prevent aging-associated deterioration of skin appearance and function by targeting cellular pathways crucial for regulating cellular senescence and SASP. This review summarizes the senostatic and senolytic potential of flavonoids in the context of preventing skin aging.  相似文献   
84.
The paper presents results concerning the synthesis and characterisation as lubricants with biodegradability potential of some complex tetraesters realised on the basis of adipic acid and different glycols such as (mono) ethylene, 1,3‐propylene, 1,4‐butylene, 1,5‐pentamethylene, 1,6‐hexamethylene, diethylene and triethylene glycol, respectively, along with oleic acid used, considered as an end, final segment or as a capping element. On the basis of a regular alternation or successive distribution principle of the polar and nonpolar chemical functions equally distributed, shared out on the length of a sufficient, satisfactorily long, large molecule, valuable synthetic complex tetraester lubricants considered as eco‐friendly base oils with biodegradability potential were performed. These products showed very good tribological properties, such as high viscosity indices and high flash points, and also very good lubricity features. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
85.
A sensitive biosensor for chloropyrifos (CPF), an organophosphorus pesticide, was developed by immobilizing acetylcholinesterase (AChE) through covalent bonding to an oxidized exfoliated graphite nanoplatelet (xGnPs)–chitosan cross-linked composite. Because of the increased surface area and the conductive properties of the nanomaterial, AChE developed a high affinity for acetylthiocholine (ATCI) and formed thiocholine with a fast response. The response of the sensor was a linear function of ATCI concentration in two segments, one from 0.005 to 0.039 mM and the second from 0.064 mM to 0.258 mM. The corresponding equation for the first range was ip(A) = 2.26 × 10? 5c + 4.39 × 10? 7 (R2 = 0.992) and the equation for the second was ip(A) = 6.80 × 10? 6c + 1.30 × 10? 6 (R2 = 1.000), with a detection limit of 1.58 × 10? 10 M. The fabrication of the sensor was simple, the response was fast and the stability acceptable. This sensor has many potential applications, the foremost being in organophosphorus pesticides.  相似文献   
86.
Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.  相似文献   
87.
Passive means of vibration attenuation have been employed successfully and efficiently in machining systems such as turning and milling. Traditional approach to controlling vibration in a milling system is to develop control mechanisms for cutting tools or machine spindles. However, due to the nature of milling operations where the cutting tools rotate at high speed, the passive vibration control methods find very limited application with the traditional approach. In order to utilise the potential of the passive vibration control methodology in milling applications, the milling operation should be viewed as a system comprising an elastic structure and operation parameters. Dynamics of this closed-loop system should improve with improvement in dynamics of any of the system components, especially within the elastic structure that comprises the cutting tool, the machine tool, the workholding system and the workpiece. Although the level of improvement will vary depending on which component of the elastic chain is targeted for this purpose. This paper presents the development and testing of tuned viscoelastic dampers (TVDs) for vibration control through their application on a workpiece in milling operations. This work targets workpiece held on a palletised workholding system for the control of unwanted vibration and thus deviates from the traditional approach where cutting tool and/or machine spindles are targeted for vibration control strategies. Palletised workholding systems, due to their compact design, offer an opportunity to design passive damping mechanisms that are easier to implement in the case of a milling system. The TVD developed through this research is based on a commercially available viscoelastic damping polymer. Advantage of such materials is their high damping performance over a wide range of excitation frequencies. The TVD design process has used a unique combination of analytical modelling with experimental FRF data. Modal impact testing showed that the application of the TVD reduced the amplitude of vibration acceleration by 20 dB for the target mode. Since the target mode corresponded to torsional vibration, the TVD was effective in two planar coordinates, i.e. X and Y. In addition, the TVD also significantly reduced the amplitude of a vibration mode far from the mode it was designed for. The system has been tested experimentally to demonstrate significant reduction in vibration amplitudes during a milling process. The milling tests with different combinations of cutting parameters show that multi-TVD approach is always valid regardless of the parameters being used. The only requirement for TVDs to function effectively is that the natural frequency of the system, for which the TVDs are designed, is excited during the milling process.  相似文献   
88.
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases.  相似文献   
89.
The paper reports the first study on hierarchical assemblies (nanofibrillar micelles confined within semi-cylindrical shells) with silsesquioxane and quaternary ammonium units obtained through polymer blending intended for antimicrobial/antifungal stone coatings. The formation of hierarchical structures on solid surfaces is due to the multiple intermolecular ionic interactions, intermolecular Van der Waals and hydrophobic interactions acting among the component molecules. Their antimicrobial/antifungal properties toward the Gram-negative bacteria, Escherichia coli, Gram-positive bacteria, Staphylococcus aureus, and Candida albicans fungus were determined in aqueous solution and were found to be strongly dependent of the topographical features of the coating.  相似文献   
90.
The ability of human pluripotent stem cells for unlimited proliferation and self-renewal promotes their application in the fields of regenerative medicine. The morphological assessment of growing colonies and cells, as a non-invasive method, allows the best clones for further clinical applications to be safely selected. For this purpose, we analyzed seven morphological parameters of both colonies and cells extracted from the phase-contrast images of human embryonic stem cell line H9, control human induced pluripotent stem cell (hiPSC) line AD3, and hiPSC line HPCASRi002-A (CaSR) in various passages during their growth for 120 h. The morphological phenotype of each colony was classified using a visual analysis and associated with its potential for pluripotency and clonality maintenance, thus defining the colony phenotype as the control parameter. Using the analysis of variance for the morphological parameters of each line, we showed that selected parameters carried information about different cell lines and different phenotypes within each line. We demonstrated that a model of classification of colonies and cells by phenotype, built on the selected parameters as predictors, recognized the phenotype with an accuracy of 70–75%. In addition, we performed a qRT-PCR analysis of eleven pluripotency markers genes. By analyzing the variance of their expression in samples from different lines and with different phenotypes, we identified group-specific sets of genes that could be used as the most informative ones for the separation of the best clones. Our results indicated the fundamental possibility of constructing a morphological portrait of a colony informative for the automatic identification of the phenotype and for linking this portrait to the expression of pluripotency markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号