首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   14篇
  国内免费   1篇
电工技术   1篇
化学工业   50篇
金属工艺   2篇
机械仪表   3篇
建筑科学   5篇
能源动力   8篇
轻工业   60篇
水利工程   1篇
石油天然气   1篇
无线电   2篇
一般工业技术   23篇
冶金工业   10篇
原子能技术   1篇
自动化技术   25篇
  2023年   1篇
  2022年   10篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   3篇
  2014年   12篇
  2013年   14篇
  2012年   13篇
  2011年   19篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   10篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
  1961年   1篇
  1957年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
21.
Monarch birch wood (Betula maximowiczina Regel) wastes were phenolated in the presence of HCl as a catalyst at 60–150°C for various reaction times. Typical kinetic parameters along with percent reacted wood and phenol were determined by using kinetic models. In addition, according to the transition‐state theory the activation parameters of wood phenolysis was determined. The percent reacted wood wastes depicted that about 90% of the wood could be liquefied into phenol at a temperature of 150°C. However, about 30% of phenol was found to react with wood components. The kinetic studies showed that wood phenolysis with HCl catalyst at 60–150°C obviously followed a bimolecular type of second‐order reaction. Activation energy was found to be 13.438 kJ mol?1 from an Arrhenius plot. Furthermore, the findings related with activation enthalpy showed that the wood phenolysis had dominantly endothermic reaction nature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1098–1103, 2002  相似文献   
22.
23.
24.
The electrochemical interactions between aluminum alloy 7075 and low-carbon steels under gelled electrolytes were studied. Such electrolytes provided the opportunity to investigate both thick and thin electrolyte systems. The electrolyte was chemically modified to visually track the acidic fronts during the anodic reaction and the subsequent hydrolysis process. Two mathematical models were validated for both thick and ultrathin electrolytes. The acidification of thick electrolytes was extended some millimeters beyond the aluminum alloy surface, whereas the acidic front was localized next to the metallic joint using ultrathin electrolytes. The combination of both numerical and experimental results allows proving (and explaining why) that the acidification process is more aggressive under dilute than under concentrated electrolytes.  相似文献   
25.
26.
27.
Cancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20‐, 21‐, and 22‐membered macrocycles containing triazole and bis(aryl ether) moieties. The compounds were prepared by a multicomponent approach from readily available commercial substrates. Notably, some of the compounds displayed interesting cytotoxicity against cancer (PC‐3) and breast (MCF‐7) cell lines, especially those bearing an aliphatic or a trifluoromethyl substituent on the N‐phenyl moiety (IC50<13 μm ). Additionally, some of the compounds were able to induce apoptosis relative to the solvent control; in particular, (Z)‐N‐cyclohexyl‐7‐oxo‐6‐[4‐(trifluoromethyl)phenyl]‐11H‐3,10‐dioxa‐6‐aza‐1(4,1)‐triazola‐4(1,3),9(1,4)‐dibenzenacyclotridecaphane‐5‐carboxamide ( 12 f ) was the most potent in this regard (22.7 % of apoptosis).  相似文献   
28.
Bis‐GMA {2,2‐bis[4‐(2′‐hydroxy‐3′‐methacryloyloxy‐propoxy)‐phenyl]‐propane}, TEGDMA <2‐{2‐[2‐(2‐methylprop‐2‐enoyloxy)ethoxy]ethoxy}ethyl‐2‐methylprop‐2‐enoate>, and methyl methacrylate (MMA) are some of the most commonly used monomers in the field of restorative dentistry. These compounds are characterized by having one or two terminal double bonds. Besides the effort to synthesize new monomers, several problems still affect the clinical behavior of contemporary dental materials. In this work, two monomers with three terminal double bonds, 5A13DA and 5A13DMA, were synthesized. Both monomers were used to completely replace TEGDMA as reactive diluent of photopolymerizable dental resin composites containing Bis‐GMA. The effects of 5A13DA and 5A13DMA on flexural properties, double bond conversion, water sorption, solubility, and polymerization shrinkage were evaluated. In addition, both monomers were evaluated as crosslinking agents for methylmethacrylate, resulting in copolymers with enhanced thermal stability. The results obtained suggest that newly synthesized monomers are potential substitutes for TEGDMA in the formulation of dental composites, providing 50% lower volumetric shrinkage than the composite resin used as control and adequate mechanical properties. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46240.  相似文献   
29.
Protein concentrates from jatropha (JPC) and soy seeds (SPC) were obtained by solubilization and acid precipitation of proteins. JPC and SPC films were prepared by the casting method, using two different montmorillonite (MMT) clay concentrations and plasticized with glycerol. Film properties were evaluated by scanning electron microscopy, transmission electron microscopy, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis, tensile properties, water retention, and water vapor transmission rate (WVRT). Typical tactoid microcomposite structures were found to be heterogeneously dispersed in the films containing MMT. A small XRD peak was found in films with MMT. Slight improvements in thermal stability and tensile strength were observed in the films with MMT. Reductions in water retention and WVRT were obtained when MMT was added into the films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44459.  相似文献   
30.
We have successfully developed, for the first time, a novel polymer-lipid hybrid nanocontainer with controlled permeability functionality. The nanocontainer is made by nanofabricating holes with desired dimensions in an impermeable polymer scaffold by focused ion beam drilling and sealing them with lipid bilayers containing remote-controlled pore-forming channel proteins. This system allows exchange of solutions only after channel activation at will to form temporary pores in the container. Potential applications are foreseen in bionanosensors, nanoreactors, nanomedicine, and triggered delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号