首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   19篇
  国内免费   1篇
电工技术   2篇
化学工业   111篇
金属工艺   5篇
机械仪表   11篇
建筑科学   13篇
能源动力   32篇
轻工业   17篇
水利工程   1篇
石油天然气   2篇
无线电   27篇
一般工业技术   75篇
冶金工业   54篇
原子能技术   1篇
自动化技术   89篇
  2024年   2篇
  2023年   7篇
  2022年   3篇
  2021年   11篇
  2020年   9篇
  2019年   18篇
  2018年   21篇
  2017年   16篇
  2016年   18篇
  2015年   19篇
  2014年   16篇
  2013年   44篇
  2012年   30篇
  2011年   27篇
  2010年   19篇
  2009年   13篇
  2008年   18篇
  2007年   18篇
  2006年   15篇
  2005年   10篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2000年   4篇
  1999年   4篇
  1998年   14篇
  1997年   5篇
  1996年   8篇
  1995年   7篇
  1994年   2篇
  1993年   2篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1967年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
431.
432.
In this study, we quantified the thermal and solid‐state mechanical and viscoelastic properties of isotactic polypropylene (i‐PP) homopolymer and poly(propylene‐1‐butene) copolymer films having a 1‐butene ratio of 8, 12, and 14 wt %, depending on the comonomer content. The uniaxial tensile creep and stress‐relaxation behaviors of the samples were studied in a dynamic mechanical analyzer at different temperatures. The creep behaviors of the samples were modeled with the four‐element Burger equation, and the long‐term creep strains were predicted with the time–temperature superposition method. The short‐term mechanical properties of the samples were also determined with tensile and impact testing at room temperature. We found that the Young's modulus and ultimate strength values of the samples decreased with increasing amount of 1‐butene in the copolymer structure. On the other hand, the strain at break and impact strength values of the samples improved with increasing amount of 1‐butene. Creep analysis showed that i‐PP exhibited a relatively lower creep strain than the poly(propylene‐co‐1‐butene)s at 30 °C. However, interestingly, we discovered that the temperature increase resulted in different effects on the creep behaviors. We also found that short‐chain branching improved the creep resistance of polypropylene at relatively high temperatures. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46350.  相似文献   
433.
In this study, isotactic poly(propylene) (PP)/poly(oxymethylene) (POM) blend films, including of POM as minor phase in the range of 10–30 wt%, are prepared in a twin screw extruder equipped with a slit‐die and cast film haul‐off unit. It is found that the blend films show characteristic immiscible matrix‐droplet morphology. Short‐term uniaxial tensile creep behaviors of films imply that the introducing of POM significantly improves the elastic modulus and decreases the total creep strain of PP/POM blends. Creep tests are also performed at various temperatures and long‐term deformations of samples are predicted by applying of time‐temperature superposition principle and the Findley model. It is found that the presence of POM domains into PP matrix enhances the creep resistance of PP especially at high temperatures. It is concluded that the PP‐rich PP/POM blend films show much lower short and long‐term creep strains compared to PP.

  相似文献   

434.
Halloysite nanotube (HNT), a natural clay, was modified with branched polyethyleneimine (PEI) to form PEI-HNT using epichlorohydrin (ECH) as coupling agent, then protonated with HCl to obtain H-PEI-HNTs providing [NH3]+[Cl] functionality for potential antimicrobial properties. Upon PEI modification, zeta potential value of HNTs was increased to +37.3 mV from −34.5 mV and to +41.1 mV for H-PEI-HNTs. Only 1.87 wt % H-element in HNT was increased to 3.03 wt % upon PEI modification along with newly generated elements of N and C at 2.99 and 9.93 wt %, respectively. Moreover, ionic liquid (IL) forms of HNTs with [NH3]+[N(CN)2], [NH3]+[PF6] and [NH3]+[BF4] functionality were generated via anion exchange of H-PEI-HNTs with sodium dicyanamide (SDC), ammonium hexafluorophosphate (AHFP), and sodium tetrafluoroborate (STFB). The antimicrobial properties of the modified, protonated, and IL forms of HNTs were determined via macro dilution, diffusion and agar screening tests against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 10145, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538 strains, and Candida albicans ATCC 10231 strains. It was found that H-PEI-HNTs possesses potent antimicrobial effect compared with the other forms of HNTs with 2–4 mg mL−1 MIC and 8–16 mg mL−1 MBC values via the macro dilution method. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48352.  相似文献   
435.
In this study, a temperature-controlled solar air collector was designed and tested for drying. Solar drying systems have two disadvantages. First one is the lack of ability to store energy and the second one is the lack of temperature control. This study presents the experimental analysis of an air collector that is able to keep the drying air temperature at 40°C even in cases where the level of solar radiation received by the collectors changes. Most of the tests were performed at a solar radiation level ranging from 500 to 900?W/m2 and at an air flow of 3 to 5?m/s. The system tested for drying three different crops separately performed 21?h of a total of 27-h drying period at or above the temperature set of 40°C. The thermodynamic analysis of the relationship between solar radiation, air temperature, flow, and the produced energy was performed. The relationship between productivity, energy produced, and set temperature was analyzed using distribution charts. Moreover, an artificial neural network model was used to estimate outlet air temperature from the solar collectors based on air flow, solar radiation, and outside air temperature.  相似文献   
436.
Many proteinaceous macromolecules selectively transport substrates across lipid bilayers and effectively serve as gated nanopores. Here, we engineered cleavage‐site motifs for human matrix metalloprotease 7 (MMP‐7) into the extracellular and pore‐constricting loops of OprD, a bacterial substrate‐specific transmembrane channel. Concurrent removal of two extracellular loops allowed MMP‐7 to access and hydrolyze a cleavage‐site motif engineered within the pore's major constricting loop, in both membrane‐incorporated and detergent‐solubilized OprDs. Import of antibiotics by the engineered OprDs into living bacteria pointed to their proper folding and integration in biological membranes. Purified engineered OprDs were also found to be properly folded in detergent. Hence, this study demonstrates the design of nanopores with a constriction cleavable by tumor‐secreted enzymes (like MMP‐7) for their potential incorporation in lipid‐based nanoparticles to accelerate drug release at the tumor site.  相似文献   
437.
In this study, the wear and friction behavior of cathodic arc physical vapor deposited AlTiSiN+TiSiN coatings on H13 tool steels were investigated by using CrN, TiN and AlCrN interlayers with tribometer tests both under unlubricated and boundary lubricated conditions. 6 mm alumina balls were used as counter surfaces to test ceramic hard coatings. Surface coatings were characterized through nanoindentation, scanning electron microscopy coupled with an energy-dispersive X-ray spectrometer (SEM/EDXS), optical profilometry, and atomic force microscopy (AFM) techniques. The results showed that especially AlTiSiN+TiSiN coating with TiN interlayer resulted in a much more enhanced tribological performance of the tool steels at both unlubricated and the boundary lubricated conditions even at elevated contact pressures.  相似文献   
438.
The effect of three different types of cellulose nanofillers on the morphology, mechanical, and thermal properties of flexible polyurethane foam was studied. Cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and cellulose filaments (CelFil) were used as fillers at 0.1–0.8 wt% loading levels. The comparison of the results showed that smaller loading levels resulted in foams with better performance in almost all cases. In the next step, the properties of foams containing CNC, CNF, or CelFil at 0.025%–0.1% loading levels were compared with those made with inorganic nanofillers including nanosilica (nSi), reduced graphene oxide, and halloysite nanotubes (HNT). Among all the properties evaluated, the tensile modulus of the foams was improved up to 40% by adding HNT at 0.05 wt% loading level whereas the addition of CNF resulted in a 44% increase in the compressive modulus of the foams at 0.1 wt% loading level.  相似文献   
439.
Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.  相似文献   
440.
The selective hydrogenation of cyclic and acyclic dienes to monoolefins occurs under very mild conditions, in the presence of silica‐supported PAMAM‐Pd complexes. The activity and selectivity of this reaction is sensitive to the dendrimer structure. These dendritic complexes display excellent recycle properties, retaining activity for up to eight recycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号