Pattern Analysis and Applications - Coronavirus (COVID-19) is one of the most serious problems that has caused stopping the wheel of life all over the world. It is widely spread to the extent that... 相似文献
Real-world data collected for computer-based applications are frequently impure. Differentiation of outliers and noisy data
from normal ones is a major task in data mining applications. On the other hand, elimination of noisy and outlier data from
training samples of a dataset may lead to over-fitting or information loss. A fuzzy support vector machine (FSVM) provides
an effective means to deal with this problem. It reduces the effect of the noisy data and outliers by using a fuzzy membership
functions. In this paper, a new formation for SVMs is introduced that considers importance degrees for training samples. The
constraints of the SVM are converted to fuzzy inequalities. The proposed method, RSVM, shows better efficiency in the classification
of data in different domains. Especially, using the proposed RSVM for multi-class classification of arrhythmia disease is
presented at the end of this paper as a practical case study to show the effectiveness of the proposed system. 相似文献
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses. 相似文献
5-Aryl-3-carboxymethylthio-1,2,4-triazoles 2 are cyclised to 6-arylthiazolo[3,2-b]-s-triazol-3(2H)-ones 3 . This structural assignment has been based on IR and NMR spectra. 2-Arylmethylene-6-arylthiazolo[3,2-b]-s-triazol-3(2H)-ones 7 were prepared by several methods. Compounds 3 coupled with diazotised anilines to give 2,3-dihydro-6-arylthiazolo[3,2-b]-s-triazole-2,3-dione 2-arylhydrazones 8 . The action of amines on 3a opens the thiazolone ring with the formation of substituted (5-phenyltriazol-3-ylthio)-acetamides 9 . 相似文献
In this paper, a novel full-duplex overlay cognitive wireless powered communication network (FD-OCWPCN) is proposed where a full-duplex (FD) hybrid-access point (H-AP) supports the full access of all battery-free secondary users (SUs). The H-AP broadcasts wireless power to empower the nearby SUs in the downlink (DL) phase while decoding the information transmitted uplink (UL) phase by the SUs, simultaneously. To overcome the self-interference (SI) phenomenon in FD-OCWPCN, the problem of maximizing the system sum-throughput with optimal UL-DL transmission/reception time and H-AP’s transmit power allocation is considered. This problem is non-convex under perfect/imperfect SI cancelation (SIC), so we employ the active interference temperature control and the gradient projection techniques to effectively reduce it into a convex problem. Closed-form expressions for the perfect/imperfect SIC cases are also derived. To assess the performance of the FD-OCWPCN, a comparison with a half-duplex OCWPCN (HD-OCWPCN) is provided. The achievable average sum-throughput for different FD/HD-OCWPCN is compared in the context of the average and peak transmit power at the H-AP, the number of SUs, path loss exponent and fairness metric. The simulation results depict the superiority of the FD-OCWPCN over the HD-OCWPCN for the perfect SIC and the effective imperfect SIC.
In recent time, a great deal of research effort has been directed toward promptly facilitating post-disaster communication by using wireless mesh networks (WMNs). WMN technology has been considered to be effectively exploited for this purpose as it provides multi-hop communication through an access network comprising wireless mesh routers, which are connected to the Internet through gateways (GWs). One of the critical challenges in using WMNs for establishing disaster-recovery networks is the issue of distributing traffic among the users in a balanced manner in order to avoid congestion at the GWs. To overcome this issue, we envision a disaster zone WMN comprising a network management center. First, we thoroughly investigate the problem of traffic load balancing amongst the GWs in our considered disaster zone WMN. Then, we develop traffic load distribution techniques from two perspectives. Our proposal from the first perspective hinges upon a balanced distribution of the bandwidth to be allocated per user. On the other hand, our second perspective considers the dynamic (i.e., varying) bandwidth demands from the disaster zone users that requires a more practical and refined distribution of the available bandwidth by following an intelligent forecasting method. The effectiveness of our proposals is evaluated through computer-based simulations. 相似文献
In this paper, some conventional filtering windows are modified and applied to uniform concentric circular antenna arrays (UCCA) for spatial smoothing and sidelobe reduction. The modified windows are applied to individual rings of the array that will taper the corresponding current amplitudes. The resulted sidelobe level, beamwidth and stability for amplitude errors are discussed for the different proposed tapering windows where it shows a sidelobe reduction to about 49 dB as in the case of Binomial UCCA while the Hamming window shows the most immunity to tapered amplitude errors. 相似文献
The ever-increasing demand for network bandwidth makes network survivability an issue of great concern. Lightpath restoration is a valuable approach to guaranteeing an acceptable level of survivability in WDM optical networks with better resource utilization than that of its protection counterpart. Active restoration (AR) is a newly proposed lightpath restoration scheme [M. Mostafa et al. OSA Journal of Optical Networking, vol. 3, no. 4, pp. 247–260] that combines the best of protection and reactive restoration while avoiding their shortcomings. In this paper, we conduct detailed performance analysis on the restoration probability of AR-based WDM networks. In particular, analytical models of restoration probability are developed respectively for networks with full-wavelength conversion capability and for networks without wavelength conversion capability under different backup path searching schemes. Based on the new models, we investigate the effects of wavelength availability, wavelength conversion capability, path length as well as backup path seeking methods on the restoration probability. 相似文献
Being a pivotal resource, conservation of energy has been considered as the most striking issue in the wireless sensor network research. Several works have been performed in the last years to devise duty cycle based MAC protocols which optimize energy conservation emphasizing low traffic load scenario. In contrast, considering the high traffic situation, another research trend has been continuing to optimize both energy efficiency and channel utilization employing rate and congestion control at the MAC layer. In this paper, we propose A Load-aware Energy-efficient and Throughput-maximized Asynchronous Duty Cycle MAC (LET-MAC) protocol for wireless sensor networks to provide an integrated solution at the MAC layer considering both the low-and high-traffic scenario. Through extensive simulation using ns-2, we have evaluated the performance of LET-MAC. LET-MAC achieves significant energy conservation during low traffic load (i.e., no event), compared to the prior asynchronous protocol, RI-MAC, as well as attains optimal throughput through maximizing the channel utilization and maintains lower delay in regard to the CSMA/CA-like protocol during a high volume of traffic (i.e., when an event occurs). 相似文献
Advanced forms of hydrogels have many inherently desirable properties and can be designed with different structures and functions. In particular, bioresponsive multifunctional hydrogels can carry out sophisticated biological functions. These include in situ single-cell approaches, capturing, analysis, and release of living cells, biomimetics of cell, tissue, and tumor-specific niches. They can allow in vivo cell manipulation and act as novel drug delivery systems, allowing diagnostic, therapeutic, vaccination, and immunotherapy methods. In the present review of multitasking hydrogels, new approaches and devices classified into point-of-care testing (POCT), microarrays, single-cell/rare cell approaches, artificial membranes, biomimetic modeling systems, nanodoctors, and microneedle patches are summarized. The potentials and application of each format are critically discussed, and some limitations are highlighted. Finally, how hydrogels can enable an “all-in-one platform” to play a key role in cancer therapy, regenerative medicine, and the treatment of inflammatory, degenerative, genetic, and metabolic diseases is being looked forward to. 相似文献