首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2775篇
  免费   179篇
  国内免费   27篇
电工技术   54篇
综合类   16篇
化学工业   620篇
金属工艺   64篇
机械仪表   106篇
建筑科学   144篇
矿业工程   4篇
能源动力   184篇
轻工业   211篇
水利工程   45篇
石油天然气   27篇
无线电   256篇
一般工业技术   450篇
冶金工业   168篇
原子能技术   27篇
自动化技术   605篇
  2024年   17篇
  2023年   66篇
  2022年   104篇
  2021年   195篇
  2020年   166篇
  2019年   182篇
  2018年   176篇
  2017年   165篇
  2016年   153篇
  2015年   111篇
  2014年   183篇
  2013年   279篇
  2012年   197篇
  2011年   221篇
  2010年   142篇
  2009年   141篇
  2008年   82篇
  2007年   44篇
  2006年   54篇
  2005年   43篇
  2004年   26篇
  2003年   26篇
  2002年   27篇
  2001年   17篇
  2000年   14篇
  1999年   14篇
  1998年   22篇
  1997年   13篇
  1996年   12篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1991年   5篇
  1990年   5篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1975年   6篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有2981条查询结果,搜索用时 15 毫秒
71.
         下载免费PDF全文
Layout optimization of steel frames with steel plate walls (SPWs) using a meta‐heuristic search algorithm is the main aim of the present study. SPWs are lateral load‐resisting systems, especially against earthquake excitation. These systems offer significant advantages in terms of cost, performance and ease of design compared with other systems. In this study, orthotropic membrane model is used to model the behaviour of steel plate shear walls. The newly developed bat algorithm, which is based on the echolocation behaviour of bats, is employed as the present study optimizer. Design variables of the optimization problem consist of the cross sections of beams and columns of the frame, the web plate thicknesses of SPWs and the placement of SPW in the frame. The bat algorithm performs suitable selection of sections from the AISC wide‐flange (W) shapes list. Strength constraints of the American Institute of Steel Construction Load and Resistance Factor Design and displacement constraints are checked during the optimization process. The results reveal the effectiveness of the proposed method for optimization of steel frames with SPWs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
72.
73.
Iranian Polymer Journal - Gas separation membranes with enhanced performance were developed by the introduction of nanosized palladium particles. In this study, gas separation performance of...  相似文献   
74.
The impact of the exact temporal pulse structure on the potential cell and tissue sparing of ultra-high dose-rate irradiation applied in FLASH studies has gained increasing attention. A previous version of our biophysical mechanistic model (UNIVERSE: UNIfied and VERSatile bio response Engine), based on the oxygen depletion hypothesis, has been extended in this work by considering oxygen-dependent damage fixation dynamics on the sub-milliseconds scale and introducing an explicit implementation of the temporal pulse structure. The model successfully reproduces in vitro experimental data on the fast kinetics of the oxygen effect in irradiated mammalian cells. The implemented changes result in a reduction in the assumed amount of oxygen depletion. Furthermore, its increase towards conventional dose-rates is parameterized based on experimental data from the literature. A recalculation of previous benchmarks shows that the model retains its predictive power, while the assumed amount of depleted oxygen approaches measured values. The updated UNIVERSE could be used to investigate the impact of different combinations of pulse structure parameters (e.g., dose per pulse, pulse frequency, number of pulses, etc.), thereby aiding the optimization of potential clinical application and the development of suitable accelerators.  相似文献   
75.
Wireless Personal Communications - Computer networks covered the entire world and a serious and new development has not formed for many years. But companies and consumer organizations complain...  相似文献   
76.
77.
SAPO-34 nanocrystals (inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO2, CH4, and N2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes (MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO2, CH4, and N2, respectively, as compared to the permeability of neat polyurethane membrane. Also, the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO2/CH4 and CO2/N2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression (PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy (R2 > 99%).  相似文献   
78.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
79.
Novel phase change materials based on paraffin and alumina‐filled polyethylene (FPE) were prepared using a two‐step process. In the first step, PE is synthesized using metallocene catalyst system. The synthesized PE is subsequently purified, whereas hydrated alumina–PE composites will be formed by the hydrolysis of aluminum organic cocatalyst and dispersion of hydrated alumina in the PE matrix. In the second step, paraffin–alumina‐FPE composites were prepared by using the ex situ technique. Scanning electron microscopy, X‐ray diffraction, Fourier‐transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry were used to evaluate the structure and thermal properties of the composites. The results show that the incorporation of a suitable amount of alumina into the composites changes their thermal stability. It is also possible to improve the thermophysical properties of the thermal energy storage materials by altering the paraffin ratio to the FPE. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
80.
A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X‐ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing‐induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10?5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two‐dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation‐induced stabilization of (110) faces and step edges of the grain surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号