首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   9篇
电工技术   1篇
综合类   1篇
化学工业   63篇
金属工艺   7篇
机械仪表   3篇
建筑科学   12篇
矿业工程   1篇
能源动力   22篇
轻工业   14篇
石油天然气   2篇
无线电   42篇
一般工业技术   80篇
冶金工业   37篇
原子能技术   1篇
自动化技术   31篇
  2024年   5篇
  2023年   7篇
  2022年   9篇
  2021年   17篇
  2020年   7篇
  2019年   11篇
  2018年   6篇
  2017年   11篇
  2016年   17篇
  2015年   7篇
  2014年   9篇
  2013年   26篇
  2012年   13篇
  2011年   17篇
  2010年   16篇
  2009年   14篇
  2008年   13篇
  2007年   6篇
  2006年   2篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   7篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
111.
Tests for stuck-open faults in static CMOS circuits consist of a sequence of two input vectors. Such test-pairs may be invalidated by delays in the circuit. Test-pairs that are not invalidated by delays in the circuit are known as robust test-pairs. We present a six-valued logic system Ω = {0, 1, r, f, 0h, 1h}. We show how Ω differs from a number of other logic systems that have been proposed for test generation. This logic system abstracts the important aspects of the transition behavior of the circuit, on application of an input pair, that is necessary to characterize robust test-pairs for stuck-open faults. This characterization of robust test-pairs is used to derive:
  1. an algorithm for determining if a given test-pair is a robust test-pair for a given stuck-open fault or not; and
  2. a simplified algorithm for computing a robust test-pair for a stuck-open fault. The resulting algorithm for computing robust tests for stuck-open faults can be implemented by minor modifications to test generation algorithms for stuck-at faults.
  相似文献   
112.
The effect of addition of nanocrystalline ZrO2 and TiCN to ultrafine Al2O3 on mechanical properties and microstructure of the composites developed by spark plasma sintering (SPS) was investigated. The distribution of the nanoparticles was dependent on their overall concentration. Maximum hardness (21 GPa) and indentation toughness (5.5 MPa m1/2) was obtained with 23 vol% nanoparticles, which was considered as the optimum composition. The Zener pinning criteria were also satisfied at this composition with grain size of the restraining nanoparticles ~63–65 nm. Hardness of the composites follows the rule of mixtures; crack deflection and crack arrest by nanoparticles at grain boundaries along with mixed fracture mode led to high toughness in the nanocomposites. Cutting tool inserts were developed by SPS with the optimized composition and their machining performance was compared with commercial alumina based inserts. Increased toughness in the nanocomposite inserts reflects in the machining performance as the tool life improves drastically compared to that of the commercial inserts at high cutting speeds ≥500 m min?1. This was attributed to differences in their failure modes; the commercial inserts fail catastrophically by fracture due to their low toughness whereas the nanocomposite inserts reach the tool failure criteria by crater wear at all machining conditions.  相似文献   
113.
Keratin 15 (K15) is type I keratin protein co-expressed with the K5/K14 pair present in the basal keratinocytes of all stratified epithelia. Although it is a minor component of the cytoskeleton with a variable expression pattern, nonetheless its expression has been reported as a stem cell marker in the bulge of hair follicles. Conversely, suprabasal expression of K15 has also been reported in both normal and diseased tissues, which is inconsistent with its role as a stem cell marker. Our recently published work has given evidence of the molecular pathways that seem to control the expression of K15 in undifferentiated and differentiated cells. In this article, we have critically reviewed the published work to establish the reliability of K15 as an epidermal stem cell marker.  相似文献   
114.
Use of hybrid fillers as a reinforcing agent for polymers is found to be critical step toward developing a high-performance composite material. However, limited know-how on the nature of interaction of the hybrid fillers with the polymer chains resulted in a major impediment toward large-scale transmissibility of such a technology. Herein, we report about a strategy, wherein the polymer composite (free of curatives), comprising of hybrid filler and its gel was leveraged to effectively understand the physics involved toward reinforcement. Styrene-butadiene random copolymer as the matrix, and combination of expanded graphite and carbon black (N220) as the model hybrid filler were selected. The hybrid filler containing composite (SG22) demonstrated significant improvement in terms of the physico-mechanical properties such as tensile strength, modulus and so forth compared to the neat carbon black-filled system (S22). Stress-relaxation studies indicated that SG22 registered minimal decay in the force with time compared to S22. SG22 demonstrated a gel fraction of 68 ± 1% while 56 ± 1% was noted for S22. Further, rheometric studies like strain sweep, frequency sweep, complex viscosity of the gel fragments indicated the formation of fractal network of the hybrid fillers inside the polymer matrix. Small angle X-ray studies corroborated the crucial role played by the expanded graphite sheets in determining the microstructure of the composite owing to their lubrication effect and segregation of carbon black agglomerates by cutting through their sharp edges resulting in a well-distributed filler network.  相似文献   
115.
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids—some of which confer “second-messenger” and receptor functions. LacCer is an integral component of the “lipid rafts,” serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists—platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)—on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a “turn-key” reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly “oxidative stress” environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation—a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced “oxidative stress” environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascular disease, and diabetes due to mitochondrial dysfunction. Thus, targeting LacCer synthase may well be the answer to remedy these pathologies.  相似文献   
116.
Automotive industry is currently looking for an eco-friendly tire with low rolling resistance coefficient (RRc), better traction, wear resistance, and fatigue properties. Presently, solution styrene-butadiene rubber (SSBR)-silica systems are pursued for balancing between traction and RRc. However, the interaction between SSBR and silica is not enough to give satisfactory results. Functionalized-SSBR (FSSBR) leads to better rubber-silica interaction due to introduction of polar groups in the polymer chain. The present study investigates the influence of FSSBR, highly dispersible (HD) silica, and its hybrid filler systems with organically modified nanoclay (ONC) and exfoliated graphene nanoplatelet (xGnP). Both MH, and Δtorque were higher for the FSSBR-HD silica compound (S1) with the lowest change in storage modulus (∆G') value, due to higher polymer-filler interaction. S1 exhibited 16% ice traction and 12% wet traction improvement with 29% lower rolling resistance over SSBR-silica compound. S1 showed the best wet traction rating and wear resistance. Replacing small portion of silica by ONC and xGnP improved the properties further. At 5 phr of nanofiller, TEM images revealed well-dispersed nanofillers in the FSSBR matrix. The xGnP compound showed the least crack growth. For both the cases, abradability decreased with higher nanofiller amount, due to better reinforcement of the rubber.  相似文献   
117.
Development of aluminum nitride (AlN)‐single walled carbon nanotube (SWCNT) ceramic‐matrix composite containing 1‐6 vol% SWCNT by hot pressing has been reported in this article. The composites containing 6 vol% SWCNT are dense (~99% relative density) and show high dc electrical conductivity (200 Sm?1) and thermal conductivity (62 Wm?1K?1) at room temperature. SWCNTs contain mostly metallic variety tubes obtained by controlled processing of the pristine tubes before incorporation into the ceramic matrix. Raman spectroscopy and field emission scanning electron microscopy (FESEM) of the fracture surface of the samples show the excellent survivability of the SWCNTs even after high‐temperature hot pressing. The results indicate the possibility of preparation of AlN nanocomposite for use in plasma devices and electromagnetic shielding.  相似文献   
118.
The antibacterial activity of sesame peptides on common pathogen was evaluated. The preparation of sesame protein hydrolysate was carried out in an enzymatic membrane reactor followed by fractionation through several ultrafiltration stages to obtain desired peptide fractions and evaluation of their antibacterial activity using two pathogens namely, Pseudomonas aeruginosa and Bacillus subtilis. Potential sesame peptides were characterized by mass spectroscopy (TOF-MS) followed by determination of their corresponding amino acid compositions. Sesame peptide fraction of molecular mass less than 1 kDa exhibited significant inhibition against growth of P. aeruginosa as compared to B. subtilis. Thus, these findings confirm the bacteriostatic effect of sesame peptide on growth of pathogens which can be exploited in bacteriostat composition.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号