首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   13篇
  国内免费   3篇
电工技术   5篇
综合类   5篇
化学工业   137篇
金属工艺   18篇
机械仪表   19篇
建筑科学   13篇
能源动力   62篇
轻工业   85篇
水利工程   15篇
石油天然气   1篇
无线电   33篇
一般工业技术   118篇
冶金工业   19篇
原子能技术   4篇
自动化技术   78篇
  2025年   1篇
  2024年   18篇
  2023年   10篇
  2022年   31篇
  2021年   46篇
  2020年   39篇
  2019年   39篇
  2018年   41篇
  2017年   37篇
  2016年   39篇
  2015年   21篇
  2014年   31篇
  2013年   47篇
  2012年   41篇
  2011年   43篇
  2010年   12篇
  2009年   16篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   8篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有612条查询结果,搜索用时 15 毫秒
71.
Carbon fiber reinforced aluminum laminates (CARALL) are one of the aluminum based Fiber metal laminates (FMLs) which, due to their high strength to weight ratio and good impact resistance are greatly replacing aluminum alloys in aircraft structures. In this research work, interlaminate shear strength of Vacuum assisted resin transfer molding (VARTM) manufactured CARALL has been investigated. Numerical simulation model incorporated with real time material data has been developed to predict the delamination behavior of CARALL laminates. Standard CARALL specimens with different surface morphologies were prepared by electric discharge machining, mechanical, chemical and electrochemical surface treatments. T-peel tests were carried out according to standard ASTM D1876-08 to find out inter laminate shear strength. FMLs made out of mechanically, chemically and electrochemically cleaned metal sheets depicted high interlaminate shear strength. SEM micrographs of failed surfaces verify the high adhesive strength of epoxy. Developed numerical simulation model accurately predicts the delamination behavior of CARALL as observed during experimentation.  相似文献   
72.
Turbulent drag reduction (DR) behavior of mixed nonionic polymer and anionic surfactant solutions in water was studied in a pipeline set up to explore the synergic effects of mixed additives on DR. The concentration of polymer polyethylene oxide (PEO) was varied from 0 to 2000 ppm and the concentration of surfactant sodium dodecyl sulfate (SDS) was varied from 0 to 5000 ppm. The critical aggregation concentration (CAC), where the interaction between the polymer and the surfactant begins, and the polymer saturation point (PSP), where the polymer molecules become saturated with the surfactant, were determined using electrical conductivity and surface tension measurements. As the polymer concentration was increased the CAC decreased but the PSP increased. The relative viscosity showed a remarkable increase upon the addition of surfactant to the polymer solution due to extension of polymer chains caused by the formation of micelles on the backbone of the polymer molecules. The data exhibited a considerable increase in DR in the case of mixed polymer/surfactant systems. The percent reduction in friction factor was as high as 79 when 3000 ppm or more surfactant was added to the 500 ppm polymer solution. Furthermore, the drag reduction behavior of the polymer solution changed from so-called Type A to Type B. In Type A drag reduction, a transition from laminar to turbulent regime is observed with a clear-cut onset point. In Type B drag reduction, no transition or onset point is observed; the data fall on a gradual extension of the laminar line.  相似文献   
73.
This article addresses the squeezing flow and heat transfer between parallel disks when one disk is impermeable and the other is porous. Appropriate similarity transformations are invoked to convert the partial differential equations into ordinary ones. Expressions for velocity and temperature fields have been obtained by homotopy analysis method (HAM). The effects of embedding parameters such as squeeze number (S), Hartman number (M), Prandtl number (Pr), and Eckert number (Ec) are analyzed through graphs for the velocity and temperature profiles and tables for skin friction coefficient and local Nusselt number. It is observed that the series solutions are convergent only at third-order of approximation. The obtained results for velocity are also compared with the homotopy perturbation method (Domairry and Aziz, 2009).  相似文献   
74.
In this paper, the preparation of vanadium phosphate catalysts was shown to be improved by (1) using V2O5 and ethylene glycol as starting and reducing agent material, respectively for VOPO4 · 2H2O, (2) subsequent water treatment and (3) microwave irradiation. In particular, the preparation route, based on the reduction of VOPO4 · 2H2O with various alcohols, is described in detail and contrasted with other three established methods performed by using ethylene glycol and isobutyl alcohol as reductant and solvent for V2O5 or distilled water as a solvent material. The preparation of catalyst precursor is carried out by two different methods, namely conventional heating and microwave irradiation. With this new technique, catalysts derived from the reduction of VOPO4 · 2H2O by ethylene glycol exhibit substantially higher surface area (typically >40 m2 g?1) and activity. In fact, the surface area of the catalyst is significantly enhanced when the precursor is refluxed by distilled water and dried by microwave heating. The characterization of catalysts was carried out using X-ray diffraction (XRD), Brunauer–Emmer–Teller (BET) surface area measurement, temperature programmed reduction (H2-TPR), temperature-programmed reaction (TPRn) and scanning electron microscopy (SEM). This study shows that employing ethylene glycol as reducing agent, followed by adding the water treatment step to catalyst synthesis procedure, and using microwave irradiation would give rise to enhanced surface area, activity and selectivity of the catalyst. Moreover, it introduces a more energy efficient procedure for preparation of vanadium phosphate catalyst used in selective oxidation of n-butane process.  相似文献   
75.
Salehi  Maryam  Zavarian  Ali Asghar  Arman  Ali  Hafezi  Fatemeh  Rad  Ghasem Amraee  Mardani  Mohsen  Hamze  Kooros  Luna  Carlos  Naderi  Sirvan  Ahmadpourian  Azin 《SILICON》2018,10(6):2743-2749
Silicon - The characterization of ion beam current density distribution and beam uniformity is crucial for improving broad-beam ion source technologies. The design of the broad ion beam extraction...  相似文献   
76.
The present study concentrated on the use of an agro-waste biodegradable sorghum biomass in its simple and modified forms for the binding of Cr (III) ions. A relatively new method of modification was adopted using urea under microwave irradiation. FTIR analysis showed the presence of oxygen and nitrogen bearing functional groups in unmodified (UMS) and modified (MS) sorghum biomass. The appearance of new bands and shifts in the peaks confirmed the modification. The influence of different process parameters such as the adsorbent dose, solution pH, contact time, agitation speed and initial metal ion concentration was studied thoroughly to evaluate optimum conditions for adsorption. Maximum adsorption for Cr (III) ions occurred at pH 5.0–6.0 using UMS and MS. Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models in a non-linear fashion were used to explain the phenomenon. Maximum adsorption capacity was 7.03 and 16.36 mg of Cr (III) per gram of UMS and MS, respectively. Adsorption mechanism was explored by pseudo-first- and pseudo-second-order kinetic models, and it was found that the process followed pseudo-second-order kinetics. Thermodynamic study indicated the process favorability. The study concluded that urea modification under microwave irradiation produces a non-toxic and more effective adsorbent for Cr (III) remediation by inducing new nitrogen bearing functional groups to sorghum biomass.  相似文献   
77.
    
Today, CO2 separation is very important, both as an environmental issue and also in various industries. In this study, the water-based nanofluid of NaP zeolite nanocrystals and 1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) ionic liquid were mixed and tested experimentally for CO2 absorption in an isothermal high pressure cell equipped with magnetic stirring. Zeolite nanocrystals were synthesized via the hydrothermal approach and characterized. A series of experiments were performed at different conditions to investigate the impact of various parameters, including nanoparticle type, nanoparticle concentration, stabilizer concentration, and the vessel's initial pressure, on CO2 solubility. It was found that 0.02 wt.% of zeolite nanoparticles, 0.4 wt.% of [C12mim][Cl] ionic liquid, and 0.05 wt.% of sodium dodecyl benzene sulphonate (SDBS) in nanofluids result in higher absorption of CO2 compared to other concentrations. Furthermore, CO2 absorption was increased by increasing ionic liquid and surfactant concentration up to a certain value near critical micelle concentration, but after that the CO2 absorption was decreased. The overall CO2 absorption enhancement at 20 bar for 0.02 wt.% zeolite and ZnO water-based nanofluids with 0.4% [C12mim][Cl] ionic liquid and 0.02 wt.% SDBS were 26.9%, 21.5%, 21.2%, and 17% in comparison to pure water, respectively. In an absorption process using nanofluids, besides the influence of the mentioned parameters, the micro-convection caused by Brownian motion and the grazing effect of nanoparticles should be noted. Considering the micro-convection and grazing effects, a theoretical model should take into account the Brownian motion and grazing effects on the mass transfer rate in nanofluids to investigate the absorption enhancement by nano-particles.  相似文献   
78.
Carbon gel catalyst layers were used in dye solar cells. These layers were prepared on flexible plastic substrates at low temperatures (130 °C). The carbon gel, demonstrated excellent flexibility which is an important feature for roll-to-roll production and special applications of dye solar cells. The use of these low cost and highly flexible catalyst layers resulted in good photovoltaic performance; only 10% lower than dye solar cells with rigid glass-based counter electrodes prepared with thermal platinization at ∼400 °C temperature.  相似文献   
79.
80.
This article investigates the effect of nanoparticles on mass transfer in the liquid–liquid extraction for the chemical system of n-butanol–succinic acid–water. For this purpose, nanofluids containing various concentrations of ZnO, carbon nanotubes (CNT), and TiO2 nanoparticles in water, as base fluid, were prepared. To examine the flow mode effect on mass transfer rate, different fluid modes including dropping and jetting were employed in the process. Results show that mass transfer rate enhancement depends on the kinds and the concentration of nanoparticles and the modes of flow. It was observed that after adding nanoparticles, the mass transfer rate significantly increases up to two-fold for ZnO nanoparticles. Furthermore, the results indicate that under the circumstances in which the mass flow rate is high enough, the effect of nanoparticles on the mass transfer phenomenon is too slight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号