首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   946篇
  免费   49篇
电工技术   9篇
综合类   2篇
化学工业   320篇
金属工艺   8篇
机械仪表   12篇
建筑科学   27篇
矿业工程   1篇
能源动力   20篇
轻工业   80篇
水利工程   1篇
石油天然气   4篇
无线电   96篇
一般工业技术   118篇
冶金工业   166篇
原子能技术   3篇
自动化技术   128篇
  2023年   15篇
  2022年   112篇
  2021年   88篇
  2020年   18篇
  2019年   23篇
  2018年   23篇
  2017年   25篇
  2016年   38篇
  2015年   20篇
  2014年   29篇
  2013年   44篇
  2012年   30篇
  2011年   45篇
  2010年   35篇
  2009年   30篇
  2008年   27篇
  2007年   40篇
  2006年   33篇
  2005年   18篇
  2004年   22篇
  2003年   19篇
  2002年   14篇
  2001年   13篇
  2000年   12篇
  1999年   9篇
  1998年   51篇
  1997年   29篇
  1996年   29篇
  1995年   12篇
  1994年   17篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1989年   2篇
  1985年   3篇
  1984年   1篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   8篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有995条查询结果,搜索用时 15 毫秒
31.
The traditional PA 6.6 production route, i.e. solution melt polymerization followed by extrusion, is applied to the in situ intercalation of PA 6.6/clay nanocomposites. Organoclays of different types are tested and the derived nanocomposites are thoroughly characterized in terms of molecular weight, thermal properties and morphology. Reaction acceleration is found in the presence of fully exchanged organoclays, which is attributed to a chain extension mechanism based on clay SiOH groups. Analysis of the nanocomposites' nanostructure indicates that the applied solution melt polymerization process results in some flocculation of the tested organoclays, which is improved in some cases after extrusion and leads to partially exfoliated nanocomposites.

  相似文献   

32.
33.
The solar thermochemical production of H2 and CO (syngas) from H2O and CO2 is examined via a two‐step cycle based on Zn/ZnO redox reactions. The first, endothermic step is the thermolysis of the ZnO driven by concentrated solar energy. The second, nonsolar step is the exothermic reaction of Zn with a mixture of H2O and CO2 yielding syngas and ZnO; the latter is recycled to the first step. A series of experimental runs of the second step was carried out in a packed‐bed reactor where ZnO particles provided an effective inert support for preventing sintering and enabling simple and complete recycling to the first, solar step. Experimentation was performed for Zn mass fractions in the range of 33–67 wt % Zn‐ZnO, and inlet gas concentrations in the range 0–75% H2O–CO2, yielding molar Zn‐to‐ZnO conversions up to 91%. A 25 wt % Zn‐ZnO sample mixture produced from the solar thermolysis of ZnO was tested in the same reactor setup and exhibited high reactivity and conversions up to 96%. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   
34.
We developed a novel method to produce graphene on silicon carbide (SiC) at a temperature as low as 1000 °C. The method is based on liquid phase growth (LPG) of graphene mediated by liquid gallium, which acts not only as a flux to store carbon dissolved from a surface of SiC when heated, but also as a catalyst to promote the formation of graphene on SiC when cooled. Our experimental results revealed that gallium-treated SiC substrates are coated with uniform and continuous graphene films. The LPG method is able to supply graphene films consisting of one to several hundreds of layers, depending on heating temperatures. Our approach can not only provide an alternative way to form graphene natively on SiC, but will also bring a technological breakthrough in industrial applications of graphene, e.g. the realization of graphene-on-insulator substrates.  相似文献   
35.
Acivicin analogues with an increased affinity for CTP synthetase (CTPS) were designed as potential new trypanocidal agents. The inhibitory activity against CTPS can be improved by increasing molecular complexity, by inserting groups able to establish additional interactions with the binding pocket of the enzyme. This strategy has been pursued with the synthesis of α‐amino‐substituted analogues of Acivicin and N1‐substituted pyrazoline derivatives. In general, there is direct correlation between the enzymatic activity and the in vitro anti‐trypanosomal efficacy of the derivatives studied here. However, this cannot be taken as a general rule, as other important factors may play a role, notably the ability of uptake/diffusion of the molecules into the trypanosomes.  相似文献   
36.
Siglecs are members of the immunoglobulin gene family containing sialic acid binding N-terminal domains. Among them, Siglec-8 is expressed on various cell types of the immune system such as eosinophils, mast cells and weakly on basophils. Cross-linking of Siglec-8 with monoclonal antibodies triggers apoptosis in eosinophils and inhibits degranulation of mast cells, making Siglec-8 a promising target for the treatment of eosinophil- and mast cell-associated diseases such as asthma. The tetrasaccharide 6’-sulfo-sialyl Lewisx has been identified as a specific Siglec-8 ligand in glycan array screening. Here, we describe an extended study enlightening the pharmacophores of 6’-sulfo-sialyl Lewisx and the successful development of a high-affinity mimetic. Retaining the neuraminic acid core, the introduction of a carbocyclic mimetic of the Gal moiety and a sulfonamide substituent in the 9-position gave a 20-fold improved binding affinity. Finally, the residence time, which usually is the Achilles tendon of carbohydrate/lectin interactions, could be improved.  相似文献   
37.
Surfactant flooding has widely been used as one of the chemically enhanced oil recovery (EOR) techniques. Surfactants majorly influence the interfacial tension, γ, between oil and brine phase and control capillary number and relative permeability behavior and, thus, influence ultimate recovery. Additives, such as nanoparticles, are known to affect surfactant properties and are regarded as promising EOR agents. However, their detailed interactions with surfactants are not well understood. Thus, in this work, we examined the influence of silica nanoparticles on the ability of surfactants to lower γ and to increase viscosity at various temperatures and salinities. Results show that the presence of nanoparticles decreased γ between n-decane and various surfactant formulations by up to 20%. It was found that γ of nanoparticles–surfactant solutions passed through a minimum at 35 °C when salt was added. Furthermore, the viscosity of cationic surfactant solutions increased at specific salt (1.5 wt.%) and nanoparticle (0.05 wt.%) concentrations. Results illustrate that selected nanoparticles–surfactant formulations appear very promising for EOR as they can lower brine/n-decane interfacial tension and act as viscosity modifiers of the injected fluids.  相似文献   
38.
Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification.  相似文献   
39.
40.
The purpose of the present study is to investigate the quasi‐static and the viscoelastic behavior of epoxy resin reinforced with starch powder. An increase in the elastic modulus on the order of 42% was achieved; a behavior that was predicted by the modulus prediction model (MPM). Next, the composite was subjected to flexural relaxation experiments, in order to determine the relaxation modulus, at different filler‐weight fractions and flexural deflections imposed. The viscoelastic models of the standard linear solid, the power law model and the residual property model (RPM) were applied in order to simulate/predict the stress relaxation curves. Predicted values derived from the application of the above models were compared to each‐other as well as to respective experimental findings. From the above comparison it was proved the superiority of the RPM model in predicting both the linear and the nonlinear viscoelastic response of the materials investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41697.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号