首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   23篇
  国内免费   3篇
电工技术   2篇
化学工业   89篇
金属工艺   28篇
机械仪表   9篇
建筑科学   9篇
矿业工程   2篇
能源动力   17篇
轻工业   23篇
水利工程   1篇
石油天然气   1篇
无线电   33篇
一般工业技术   70篇
冶金工业   10篇
原子能技术   10篇
自动化技术   67篇
  2023年   4篇
  2022年   18篇
  2021年   24篇
  2020年   5篇
  2019年   18篇
  2018年   13篇
  2017年   9篇
  2016年   12篇
  2015年   15篇
  2014年   22篇
  2013年   27篇
  2012年   33篇
  2011年   25篇
  2010年   17篇
  2009年   20篇
  2008年   16篇
  2007年   14篇
  2006年   17篇
  2005年   9篇
  2004年   5篇
  2003年   10篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1972年   2篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
11.
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.  相似文献   
12.
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.  相似文献   
13.
In this study, the gel strength and visible microstructure of fat containing β-lactoglobulin-κ-carrageenan gels were investigated using puncture testing and confocal scanning laser microscopy, respectively. The gel strength was closely linked to the visible microstructure of the whey protein network as stained with Rhodamine B. Covalent labelling of κ-carrageenan with FITC prior to gel formation enabled localisation of the hydrocolloid phase, but caused a significant drop in the gel strength. This effect coincided with the observed reduction of the κ-carrageenan intrinsic viscosity, which was found to be a result of the labelling process. The use of a novel dye, V03-01136, for the staining of fat allowed for the specific and concurrent visualisation of the protein, hydrocolloid and fat phases under the conditions applied in the study.  相似文献   
14.
This study studied corrosion in 0.1 M Na2SO4, 0.1 M NaCl, and 0.6 M NaCl, all saturated with Mg(OH)2, using weight loss, hydrogen evolution, and electrochemical measurements. Corrosion was similar in all cases. Nevertheless, the corrosion rates were alloy-dependent, were somewhat lower in 0.1 M Na2SO4 than in 0.1 M NaCl, and increased with NaCl concentration. The corrosion damage morphology was similar for all solutions; the extent correlated with the corrosion rate. The corrosion rates evaluated by the electrochemical methods were lower than those evaluated from hydrogen evolution, consistent with the Mg corrosion mechanism involving the unipositive Mg+ ion.  相似文献   
15.
A high abundance of methane and its relatively low price make it an attractive raw feedstock for the production of ethylene, which is in the consumer demand in recent years. Direct catalytic nonoxidative conversion is interesting, because it could be utilized on natural gas well sites. Monometallic and bimetallic Fe and Mo catalysts were prepared for the purpose of the coupling to ethane and ethene. Three supported materials were synthesized with the following loading of metal: 2.5‐wt% Fe, 5.0‐wt% Fe, and 2.5‐wt% Mo on HZSM‐5. Process' chemical reactions were also catalyzed with a constant 2.5‐wt% Mo/HZSM‐5, which had different amounts of Fe, namely, 0.5, 1.0, and 2.5 wt%. Fourier transform infrared (FTIR), N2 adsorption/desorption, NH3 temperature‐programmed desorption (TPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) were applied for characterization. Coke, accumulated on spent solids, was determined by thermogravimetric analysis (TGA). Activity was evaluated in quartz‐packed bed reactor. All surfaces suffered from deactivation due to carbon formation. The addition of Fe to Mo increased CH4 reacted. The highest selectivity for alkenes was achieved over 1.0‐wt% Fe to 2.5‐wt% Mo/HZSM‐5. At the peak of performance, the C‐based reactivity was 52% for olefins and 2% for alkanes. Stability was accomplished over 2.5‐wt% Fe/HZSM‐5, where the rate of C2 synthesis was comparatively stable for 20 hours of the time on stream. The selective C‐basis yield for C2H4 and C2H6 was 36% and 23%, respectively. The lowest measured quantity of (carbonaceous) by‐products was deposited on 2.5‐wt% Fe/HZSM‐5 after 26 hours. Propylene was detected very limitedly.  相似文献   
16.
17.
A nanocomposite material based on copper(II) oxide (CuO) and its utilization as a highly selective and stable gas‐responsive electrical switch for hydrogen sulphide (H2S) detection is presented. The material can be applied as a sensitive layer for H2S monitoring, e.g., in biogas gas plants. CuO nanoparticles are embedded in a rigid, nanoporous silica (SiO2) matrix to form an electrical percolating network of low conducting CuO and, upon exposure to H2S, highly conducting copper(II) sulphide (CuS) particles. By steric hindrance due to the silica pore walls, the structure of the network is maintained even though the reversible reaction of CuO to CuS is accompanied by significant volume expansion. The conducting state of the percolating network can be controlled by a variety of parameters, such as temperature, electrode layout, and network topology of the porous silica matrix. The latter means that this new type of sensing material has a structure‐encoded detection limit for H2S, which offers new application opportunities. The fabrication process of the mesoporous CuO@SiO2 composite as well as the sensor design and characteristics are described in detail. In addition, theoretical modeling of the percolation effect by Monte‐Carlo simulations yields deeper insight into the underlying percolation mechanism and the observed response characteristics.  相似文献   
18.
This article analyses the microstructure, electrochemical behavior, and biocompatibility of a novel Ti-20Nb-10Zr-5Ta alloy with low Young’s modulus (59 GPa) much closer to that of bone, between 10 and 30 GPa, than Ti and other Ti alloys used as implant biomaterial. XRD and SEM measurements revealed a near β crystalline microstructure containing β phase matrix and secondary α phase, with a typical grain size of around 200 μm. The corrosion behavior in neutral Ringer solution evidenced: self-passivation behavior characterizing a very resistant passive film; an easy passivation as a result of favorable influence of the alloying elements Nb, Zr, and Ta that participate with their passive oxides to the formation of the alloy passive film; low corrosion and ion release rates corresponding with very low toxicity. In MEM solution, the novel alloy demonstrated very high corrosion resistance and no susceptibility to localized corrosion. Biocompatibility was evaluated on in vitro human osteoblast-like and human immortalized pulmonary fibroblast cell (Wi-38) lines and the new Ti-20Nb-10Zr-5Ta alloy exhibited no cytotoxicity. The new Ti-20Nb-10Zr5Ta alloy is a promising material for implants due to combined properties of low elastic modulus, very low corrosion rate, and good biocompatibility.  相似文献   
19.
An empirical analysis is presented for researching linkages between manufacturing strategy, benchmarking, performance measurement (PM) and business process reengineering (BPR). Although the importance of these linkages has been described in conceptual literature, it has not been widely demonstrated empirically. The survey research was carried out in 73 medium and large-sized Slovenian manufacturing companies within the mechanical, electro-mechanical and electronic industries. The resulting data were subjected to reliability and validity analyses. Canonical correlation analysis was used to test six hypotheses.The results confirmed the need for a strategically-driven BPR approach and the positive impact of performance measurement on BPR performance.  相似文献   
20.
Students and lecturers would like to know how well students have learned the study materials being taught. A formal test or exam would cause needless stress for students. To resolve this problem, the authors of this article have developed an Intelligent Pupil Analysis (IPA) System. A sufficient amount of studies worldwide prove an interrelation between pupil size and a person's cognitive load. The obtained research results are comparable with the results from other similar studies. The original contribution of this article, compared to the research results published earlier, is as follows: the IPA System developed by the authors is superior to the traditional pupil analysis research due to the integration of pupil analysis with subsystems of decision support, recommender and intelligent tutoring systems and innovative Models of the Model-base, which permit a more detailed analysis of the knowledge attained by a student. This article ends with a case study to demonstrate the practical operation of the IPA System.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号