Cation exchanger (steel vessel), containing polymeric beads as exchange resin, in a process industry is found to be affected from localized “pitting” corrosion during the turnaround. There are two main cycles of such exchanger’s operation, i.e., normal and regeneration cycles, differentiated by passing canal/well water and sulfuric acid solution, respectively. Corrosion rates by Tafel techniques are measured for both these cycles. The different corrosion rates for canal and well water are explained as per reduction reaction equilibrium. During regeneration cycle, certain other tests like cyclic polarization and potentiostatic polarization are also conducted to understand the cause of the localized corrosion. Potentiostatic tests' observations revealed an interesting phenomenon probably explaining the failure not elucidated by the conventional corrosion measurement techniques. 相似文献
The present study investigates the thermal, mechanical and microscopic properties of polyphenylene sulphide/carbon fiber (PPS/CF) composites by incremental number of fiber layers. The composites were prepared by hand lay-up technique followed by compression molding. A superior matrix-reinforcement adhesion was attained without the use of coupling agent and mechanical stability of the composites improved with increasing fiber layers. Transverse rupture strength and bending modulus were improved by 59.84 and 125.21 %, respectively, without loss in toughness. Impact strength and hardness values were enhanced while storage modulus, loss modulus and damping factor were dropped by increases in fiber layers. Thermogravimetric analysis (TGA) indicated a gradual rise in thermal stability (16.84 %) of the composite as compared to pure matrix. Surface morphology and crack propagation were studied by optical microscopy. It was found that crack was propagated in a linear plane by applying load. In addition, scanning electron microscopy (SEM) illustrated steady alignment of fibers and uniform distribution of the matrix around reinforcement. Based on the obtained results, fiber layers showed great potential for enhancement of thermal and mechanical properties of the composites. 相似文献
It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g?1, respectively, at current density of 100 mA g?1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X‐ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used. 相似文献
An experimental study of the behavior of woven glass fiber/epoxy composite laminated panels under compression is presented. Compression tests were performed on to 16 fiber-glass laminated plates with and without circular cut-outs using the compressed machine. The maximum load of failure for each of the glass-fiber/epoxy laminated plates under compression has been determined experimentally. A parametric study was performed as well to investigate the effects of varying the centrally located circular cut-out sizes and fiber angle-ply orientations on to the ultimate load. The experimental work revealed that as the cut-out size increases, the maximum load of the composite plate decreases. Also, it has been observed that cross-ply laminates possess the greatest ultimate load as compared to other types of ply stacking sequences and orientations. 相似文献
The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies. Therefore, this paper assesses the effect of this factor on the convergence speed and accuracy of results for various types of thermo-flow. To improve the stability and convergence speed of time discretizations, the fifth-order Runge-Kutta method is applied. A computer program has been written in FORTRAN to solve the discretized equations in different Reynolds and Grashof numbers for various grids. The results demonstrate that the artificial compressibility factor has a noticeable effect on the accuracy and convergence rate of the simulation. The optimum artificial compressibility is found to be between 1 and 5. These findings can be utilized to enhance the performance of commercial numerical simulation tools, including ANSYS and COMSOL. 相似文献
In this paper, fractional calculus theory is employed to inspect a finite time fault tolerant controller for robotic manipulators in the presence of uncertainties, unknown external load disturbances, and actuator faults, using fractional-order adaptive backstepping approach in order to achieve, fast response and high-precision tracking performance. Knowing the advantages of adaptive controllers an adaptive form of the above controller is then established to deal with the overall uncertainties in the system. The most important property of the proposed controller is that we do not need to have knowledge about the actuator fault, external disturbances and system uncertainties exist in system. In this study two important achievements are made. The first one is that the finite time convergence of closed-loop system is ensured irrespective of initial states values. The second one is that the effects of the actuator faults and other uncertainties are attenuated by the suggested controller. The performance of the suggested controller is then tested for a PUMA560 robot in which the first three joints are used. The simulation results validate the usefulness of the suggested finite-time fractional-order adaptive backstepping fault-tolerant (FOAB-FTC) controller in terms of accuracy of tracking, and convergent speed.
Thin films of polymethyl methacrylate (PMMA) were synthesized. Ferric oxalate was dispersed in PMMA films. These films were irradiated with 80 MeV O6+ ions at a fluence of 1×1011 ions/cm2. The radiation induced changes in electrical conductivity, Mössbauer parameter, microhardness and surface roughness were investigated. It is observed that hardness and electrical conductivity of the film increases with the concentration of dispersed ferric oxalate and also with the fluence. It indicates that ion beam irradiation promotes (i) the metal to polymer bonding and (ii) convert the polymeric structure into hydrogen depleted carbon network. Thus irradiation makes the polymer harder and more conductive. Before irradiation, no Mössbauer absorption was observed. The irradiated sample showed Mössbauer absorption, which seems to indicate that there is significant interaction between the metalion and polymer matrix. Atomic force microscopy shows that the average roughness (Ra) of the irradiated film is lower than the unirradiated one. 相似文献
Abstract— The purpose of this study is to determine the reading performance of operators on a desktop computer. The effects of luminance contrast, viewing distance, and character size on the speed of reading were investigated. The luminance contrast between the background and character was varied while color contrast was held near‐constant. Stimuli with different levels of character size, viewing distance, and luminance contrast were considered while assessing the readability performance. The luminance contrast between the background and character (0.01, 0.15, and 1.00), character sizes (0.2, 1.5, and 4°), and viewing distance (40, 50, and 60 cm) were used, and the performance of the operators were recorded in terms of words per minutes (WPM). Standard workplace design recommendations to position the center of the visual display terminal (VDT) 15° and 40° below horizontal eye level were used for the visually intensive readability task. An orthogonal array, the signal‐to‐noise (S/N) ratio, and the analysis of variance (ANOVA) were employed to investigate the above‐mentioned operating parameters to determine the optimum readability performance. The results indicated that performance was better at a 15° viewing angle as compared to a 40° viewing angle. 相似文献
Evaluation of wheat cultivars from different eras allows scientists to determine changes in agronomic and end-use quality characteristics associated with grain yield and end-use quality improvement over time. Forty-four spring wheat cultivars introduced or released since 1933 were evaluated for quality improvement using canonical variant analysis. It was observed that there was a considerable improvement in protein content from 1933 to 1964 whereas the genetic potential for straight grade flour protein from 11.34% in 1933–1964 to 12.13% in 1991–1996. Crude protein increased by 6.95% from 1933 to 1996. Ash content and flour yield declined by 9.55% and 5.51%, respectively. Total chapati scores of modern cultivars were 8.97% higher than those of cultivars grown earlier. The average spread ratio and overall cookie scores increased almost 5.53% and 4.44%, respectively from 1933 to 1996. It was also observed that overall cookie scores were highest during the period 1981–1990. The average dry gluten and total chapati scores of varieties grown since 1991 were approximately 10.20% and 74.72% respectively, which were 4.72% and 8.97% higher than those of cultivars grown since 1933. Average spread ratio and overall cookie scores increased almost 5.53% and 4.44% from 1933 to 1996, respectively. The era (1991–1996) containing the modern varieties showed a substantial improvement in lysine content than the era containing the oldest wheat varieties. Similarly amino acid score was also found to be 4.26% higher than the varieties released during the period 1933–1964. 相似文献