首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6117篇
  免费   490篇
  国内免费   11篇
电工技术   58篇
综合类   9篇
化学工业   2548篇
金属工艺   78篇
机械仪表   87篇
建筑科学   263篇
矿业工程   34篇
能源动力   161篇
轻工业   1138篇
水利工程   41篇
石油天然气   35篇
无线电   258篇
一般工业技术   940篇
冶金工业   323篇
原子能技术   15篇
自动化技术   630篇
  2024年   12篇
  2023年   58篇
  2022年   426篇
  2021年   773篇
  2020年   231篇
  2019年   211篇
  2018年   254篇
  2017年   209篇
  2016年   265篇
  2015年   225篇
  2014年   272篇
  2013年   451篇
  2012年   376篇
  2011年   414篇
  2010年   277篇
  2009年   277篇
  2008年   276篇
  2007年   244篇
  2006年   219篇
  2005年   152篇
  2004年   141篇
  2003年   114篇
  2002年   101篇
  2001年   56篇
  2000年   47篇
  1999年   55篇
  1998年   35篇
  1997年   43篇
  1996年   43篇
  1995年   36篇
  1994年   36篇
  1993年   31篇
  1992年   27篇
  1991年   18篇
  1990年   23篇
  1989年   11篇
  1988年   18篇
  1987年   14篇
  1986年   7篇
  1985年   18篇
  1984年   16篇
  1983年   17篇
  1982年   7篇
  1981年   11篇
  1980年   11篇
  1979年   9篇
  1977年   7篇
  1976年   5篇
  1974年   4篇
  1966年   5篇
排序方式: 共有6618条查询结果,搜索用时 31 毫秒
991.
Escherichia coli growth and H2 production were followed in the presence of heavy metal ions and their mixtures during glycerol or glucose fermentation at pH 5.5–7.5. Ni2+ (50 μM) with Fe2+ (50 μM) but not sole metals stimulated bacterial biomass during glycerol fermentation at pH 6.5. Ni2++Fe3+ (50 μM), Ni2 +Fe3++Mo6+ (20 μM) and Fe3++Mo6+ (20 μM) but not sole metals enhanced up to 3-fold H2 yield but Cu+ or Cu2+ (100 μM) inhibited it. At pH 7.5 stimulating effect on biomass was observed by Ni2++Fe2++Mo6+. H2 production was enhanced 2.7 fold particularly by Ni2++Fe3++Mo6+ at the late stationary growth phase. Whereas at pH 5.5 increased biomass was when Fe2++Mo6+ or Mo6+ were added. H2 yield was decreased compared with that at pH 6.5, but metal ions again enhanced it. During glucose fermentation at pH 6.5 biomass was increased by the mixtures of metal ions, and 1.2 fold increased H2 yield was observed. At pH 7.5 Ni2++Fe2+ increased biomass but Cu+ or Cu2+ had suppressing effect; Fe3++Mo6+ stimulated H2 production. At pH 5.5 biomass also was raised by Ni2++Fe2++Mo6+; H2 yield was increased upon Mo6+ and Mo6++Fe2+ or Mo6++Fe3+ additions. The results point out the importance of Ni2+, Fe2+, Fe3+ and Mo6+ and some of their combinations for E. coli bacterial growth and H2 production mostly during glycerol but not glucose fermentation and at acidic conditions (pH 5.5 and 6.5). They can be used for optimizing fermentation processes on glycerol, controlling bacterial biomass and developing H2 production biotechnology.  相似文献   
992.
The Escherichia coli BW25113 or MC4100 wild type parental strains growth and H2 production kinetics was studied in batch cultures of minimal salt medium (MSM) and peptone medium (PM) at pH of 5.5–7.5 upon glycerol (10 g L?1) fermentation and formate (0.68 g L?1) supplementation. The role of formate alone or with glycerol on growth and H2 production via hydrogenases (Hyd) was investigated in double hyaB hybC (lacking large subunits of Hyd 1 and 2), triple hyaB hybC hycE (lacking large subunits of Hyds 1-3) and sole selC (lacking formate dehydrogenase H) mutants during 24 h bacterial growth. H2 production was delayed and observed after 24 h bacterial wild type strains growth on MSM. Moreover, it reached the maximal values after 72 h growth at the pH 6.5 and pH 7.5. Biomass formation of the mutants used was inhibited ~3.5 fold compared with wild type, and H2 production was absent in hyaB hybC hycE and selC mutants upon glycerol utilization on MSM at pHs of 5.5–7.5. Formate inhibited bacterial growth on MSM with glycerol, but enhanced and recovered H2 production by hybC mutant at pH 7.5. H2 evolution was delayed at pH 7.5 in PM, but observed and stimulated at pH 6.5 upon glycerol and formate utilization in hyaB hybC mutant. H2 production was absent in hyaB hybC hycE and selC mutants upon glycerol, formate alone or with glycerol fermentation at pH 6.5 and pH 7.5; formate supplementation had no effect. The results point out E. coli ability to grow and utilize glycerol in MSM with comparably high H2 yield: as well as they suggest the key role of Hyd-3 at both pH 6.5 and pH 7.5 and the role of Hyd-2 and Hyd-4 at pH 7.5 in H2 production by E. coli during glycerol fermentation with formate supplementation. The results obtained are novel and might be useful in H2 production biotechnology development using different nutrient media and glycerol and formate as feedstock.  相似文献   
993.
Four different p‐PDA–based polyimide thin films were prepared from their respective poly(amic acid)s through thermal imidization at 400°C: poly(p‐phenylene pyromellitimide) (PMDA‐PDA); poly(p‐phenylene biphenyltetra carboximide) (BPDA‐PDA); poly(p‐phenylene 3,3′,4,4′‐oxydiphthalimide) (ODPA‐PDA); and poly(p‐phenylene 4,4′‐hexafluoroisopropylidene diphthalimide) (6FDA‐PDA). Water‐sorption behaviors of polyimide films were gravimetrically investigated at 25°C and 22–100% relative humidity by using the modified electromicrobalance (Thin Film Diffusion Analyzer). The diffusion coefficients of water for the polyimides varies in the range of 1.6 to 10.5 × 10−10 cm2/s, and are in the increasing order: BPDA‐PDA < PMDA‐PDA ∼ ODPA‐PDA < 6FDA‐PDA. The water uptakes of polyimides vary from 1.46 to 5.80 wt %, and are in the increasing order: BPDA‐PDA < ODPA‐PDA < 6FDA‐PDA < PMDA‐PDA. The water‐sorption behaviors for the p‐PDA–based polyimides are closely related to the morphological structure; specifically, the diffusion coefficients in p‐PDA–based polyimide thin films are closely related to the in‐plane orientation and mean intermolecular distance, whereas the water uptakes are affected by the packing order. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1315–1323, 2000  相似文献   
994.
A novel method for the preparation of immobilized α, β, or γ‐cyclodextrins on polypropylene nonwoven supports has been previously presented. The obtained new materials were prepared by graft‐polymerization of glycidyl methacrylate onto polypropylene after activation of the support by the electron beam technique, followed by the coupling of cyclodextrins with the epoxide groups. The structure of the resulting materials is characterized in detail using Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance analysis, differential scanning calorimetry, thermogravimetric analysis, and optical microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2166–2173, 2000  相似文献   
995.
996.
Parkinson’s disease (PD) is the second most common neurodegenerative disease characterised by both motor- and non-motor symptoms, including cognitive impairment. The aetiopathogenesis of PD, as well as its protective and susceptibility factors, are still elusive. Neuroprotective effects of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors—statins—via both cholesterol-dependent and independent mechanisms have been shown in animal and cell culture models. However, the available data provide conflicting results on the role of statin treatment in PD patients. Moreover, cholesterol is a vital component for brain functions and may be considered as protective against PD. We present possible statin effects on PD under the hypothesis that they may depend on the HMG-CoA reductase gene (HMGCR) variability, such as haplotype 7, which was shown to affect cholesterol synthesis and statin treatment outcome, diminishing possible neuroprotection associated with HMG-CoA reductase inhibitors administration. Statins are among the most prescribed groups of drugs. Thus, it seems important to review the available data in the context of their possible neuroprotective effects in PD, and the HMG-CoA reductase gene’s genetic variability.  相似文献   
997.
Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine’s ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.  相似文献   
998.
Tau cleavage plays a crucial role in the onset and progression of Alzheimer’s Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)—a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic β cells and to induce insulin resistance—mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it’s in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-β axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.  相似文献   
999.
Taxane efficacy in triple negative breast cancer(TNBC)is limited by insufficient tumor accumulation and severe off-target effects.Nanomedicines offer a unique opportunity to enhance the anti-cancer potency of this drug.Here,1,000 nm×400 nm discoidal polymeric nanoconstructs(DPN)encapsulating docetaxel(DTXL)and the near infrared compound Iipid-Cy5 were engineered.DPN were obtained by filling multiple times cylindrical wells in a poly(vinyl alcohol)template with a polymer mixture comprising poly(lactic-co-glycolic acid)(PLGA)and poly(ethylene glycol)diacrylate(PEG-DA)chains together with therapeutic and imaging agents.The resulting“multi-passage”DPN exhibited higher DTXL loading,Iipid-Cy5 stability,and stiffness as compared to the conventional"single-passage"approach.Confocal microscopy confirmed that DTXL-DPN were not taken up by MDA-MB-231 cells but would rather sit next to the cell membrane and slowly release DTXL thereof.Empty DPN had no toxicity on TNBC cells,whereas DTXL-DPN presented a cytotoxic potential comparable to free DTXL(IC50=2.6 nM±1.0 nM vs.7.0 nM±1.09 nM at 72 h).In orthotopic murine models,DPN accumulated in TNBC more efficiently than free-DTXL.With only 2 mg/kg DTXL,intravenously administered every 2 days for a total of 13 treatments,DTXL-DPN induced tumor regression and were associated to an overall 80%survival rate as opposed to a 30%survival rate for free-DTXL,at 120 days.All untreated mice succumbed before 90 days.Collectively,this data demonstrates that vascular confined multi-passage DPN,biomimicking the behavior of circulating platelets,can efficiently deliver chemotherapeutic molecules to malignant tissues and effectively treat orthotopic TNBC at minimal taxane doses.  相似文献   
1000.
Glioblastoma is the most life‐threatening tumour of the central nervous system. Temozolomide (TMZ) is the first‐choice oral drug for the treatment of glioblastoma, although it shows low efficacy. Silver nanoparticles (AgNPs) have been shown to exhibit biocidal activity in a variety of microorganisms, including some pathogenic microorganisms. Herein, the antiproliferative effect of AgCl‐NPs on glioblastoma cell lines (GBM02 and GBM11) and on astrocytes was evaluated through automated quantitative image‐based analysis (HCA) of the cells. The cells were treated with 0.1‐5.0 μg/ml AgCl‐NPs or with 9.7‐48.5 μg/ml TMZ. Cells that received combined treatment were also analysed. At a maximum tested concentration of AgCl‐NPs, GBM02 and GBM11, the growth decreased by 93% and 40%, respectively, following 72 h of treatment. TMZ treatment decreased the proliferation of GBM02 and GBM11 cells by 58% and 34%, respectively. Combinations of AgCl‐NPs and TMZ showed intermediate antiproliferative effects; the lowest concentrations caused an inhibition similar to that obtained with TMZ, and the highest concentrations caused inhibition similar to that obtained with AgCl‐NPs alone. No significant changes in astrocyte proliferation were observed. The authors’ findings showed that HCA is a fast and reliable approach that can be used to evaluate the antiproliferative effect of the nanoparticles at the single‐cell level and that AgCl‐NPs are promising agents for glioblastoma treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号