首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   37篇
综合类   1篇
化学工业   181篇
金属工艺   4篇
机械仪表   13篇
建筑科学   15篇
能源动力   13篇
轻工业   194篇
石油天然气   6篇
无线电   15篇
一般工业技术   56篇
冶金工业   20篇
自动化技术   62篇
  2023年   5篇
  2022年   32篇
  2021年   35篇
  2020年   16篇
  2019年   18篇
  2018年   17篇
  2017年   25篇
  2016年   21篇
  2015年   19篇
  2014年   12篇
  2013年   41篇
  2012年   24篇
  2011年   42篇
  2010年   21篇
  2009年   15篇
  2008年   21篇
  2007年   37篇
  2006年   14篇
  2005年   17篇
  2004年   17篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   12篇
  1994年   7篇
  1993年   15篇
  1992年   5篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
排序方式: 共有580条查询结果,搜索用时 15 毫秒
61.
Phenolic compounds were determined in artichoke (Cynara scolymus), garlic (Allium sativium) and spinach (Spinacia oleracea) using a single method based on simple extraction and ultra-high-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Several compounds belonging to different families, such as phenolic acids, isoflavones, flavones and flavonols, were determined. The analytical procedure was validated in all the matrices, obtaining recoveries ranging from 60 to 120 % with reproducibility values (expressed as relative standard deviations (RSDs)) lower than 26 %. Limits of quantification (LOQs) were always equal to or lower than 50 μg/kg, except to kaempferol and its glucosides in spinach (LOQs?=?75 μg/kg). Artichoke showed higher concentration of phenolic compounds (837.2 mg/kg dry weight (DW)) than garlic (26.5 mg/kg DW) or spinach (64.5 mg/kg DW). Apigenin 7-O-glucoside (from 147.0 to 722.7 mg/kg DW) was found to be the major flavonoid in all samples of artichoke investigated, while chlorogenic acid, whose concentration ranged from 37.8 to 734.7 mg/kg DW, is the major phenolic acid in this matrix. Regarding garlic, caffeic acid (from 1.7 to 28.3 mg/kg DW) and quercetin (from 9.0 to 18.9 mg/kg DW) were the compounds detected at higher concentrations, although in general the total content was very low in relation to other matrices. In relation to spinach, ferulic acid was the major phenolic compound, and its concentration ranged from 18.0 to 41.4 mg/kg DW.  相似文献   
62.
63.
64.
Fresh‐cut ‘Big Top’ nectarines were dipped in 2% (w/v) ascorbic acid–1% (w/v) calcium lactate and stored at 4 °C for up to 12 days in 10 kPa O2‐ and 10 kPa CO2‐modified atmosphere packaging (MAP). The used microperforated plastic film allowed O2 and CO2 concentrations to reach steady values from the fifth day in storage onwards. Samples stored in MAP after chemical dipping showed the highest visual quality score, slight browning symptoms, increment in firmness and very low ethanol and acetaldehyde content. The chemical dipping also increased antioxidant capacity, probably due to the effect of ascorbic acid. The results suggested that the control of yeasts was mainly exerted by MAP, whereas only a slight effect was achieved by the chemical dipping. Therefore, MAP plus ascorbic acid/calcium lactate dipping was the best combination to preserve phytochemical content, antioxidant capacity and microbiological safety of fresh‐cut nectarines during storage.  相似文献   
65.
Seven target polychlorinated biphenyls (PCBs; IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) and the organochlorine pesticides (OCPs) hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDT) and its related metabolites (p,p'-DDT, p,p'-DDE, and p,p'-DDD) were quantified in edible tissues from seven marine species (European hake, red mullet, blue whiting, Atlantic mackerel, blue and red shrimp, European flying squid, and Mediterranean mussel) from the Gulf of Naples in the southern Tyrrhenian Sea (Italy). PCBs 118, 138, and 153 were the dominant congeners in all the species examined. The concentrations of all PCBs (from not detectable to 15,427 ng g(-1) fat weight) exceeded those of all the DDTs (from not detectable to 1,769 ng g(-1) fat weight) and HCB (not detectable to 150.60 ng g(-1) fat weight) in the samples analyzed. The OCP concentrations were below the maximum residue limits established for fish and aquatic products by the Decreto Ministerale 13 May 2005 in all the samples analyzed; therefore the OCPs in the southern Tyrrhenian Sea species are unlikely to be a significant health hazard. Conversely, the mean concentrations of PCBs exceeded (greatly in some cases) the current limits (200 ng(-1) fat weight) set by the European Union for terrestrial foods. Although the manufacture and use of PCBs are banned or highly restricted, these compounds still are important persistent chemical contaminants in the Gulf of Naples.  相似文献   
66.
67.
68.
Many studies have shown that the presence of 1,25-dihydroxyvitamin D3 in the eye is able to modulate inflammatory responses. In fact, it has been demonstrated that topical administration of vitamin D3 inhibits Langerhans cells migration from the central cornea, corneal neovascularization, and production of cytokines (i.e., interleukin-1-6-8) in experimental animals.

Moreover, both in vitro and in vivo studies have demonstrated that vitamin D is a potent inhibitor of retinal neovascularization. It has been shown that calcitriol, the biologically active form of vitamin D, inhibits angiogenesis both in cultured endothelial cells and in retinas from guinea pigs with retinoblastoma or oxygen-induced ischemic retinopathy. In addition, it seems that this compound is able to prevent the progression from early to neovascular age-related macular degeneration (AMD) and, at the same time, to down-regulate the characteristic inflammatory cascade at the retinal pigment epithelium–choroid interface due to its anti-inflammatory and immunomodulatory capabilities.

Furthermore, 1,25-dihydroxyvitamin D3 and its analogue, 2-methylene-19-nor-1,25-dihydroxyvitamin D3, are able to modulate intraocular pressure (IOP) through gene expression. Several studies have suggested a role in glaucoma and diabetic retinopathy therapies for vitamin D3.

In conclusion, this review summarizes our current knowledge on the potential use of vitamin D3 in the protection and treatment of ocular diseases in ophthalmology.  相似文献   

69.
The sound propagation from a wind turbine situated on the top of a hill into the downwind domain is studied by numerical simulations for 13 cases with varying hill geometry and inflow conditions. The influence of the hill on the atmospheric flow and the wake due to the rotor are simulated by precursory large‐eddy simulations. In addition to the combined consideration of hill and turbine wake effects, these effects are also separately evaluated. The results show that placing the turbine on top of a hill leads to slightly lower sound levels on the downwind plane, although the wake alone supports downward refraction and tends to increase the sound impact near the ground at greater distance. Variations of the hill geometry and the inflow conditions do not have significant effects on the near‐ground sound levels in the downwind domain.  相似文献   
70.
Genetic instability causes very rapid asymmetrical loss of heterozygosity (LOH) at the cyh2 locus and loss of killer K2 phenotype in some wine yeasts under the usual laboratory propagation conditions or after long freeze-storage. The direction of this asymmetrical evolution in heterozygous cyh2(R)/CYH2(S) hybrids is determined by the mechanism of asymmetrical LOH. However, the speed of the process is affected by the differences in cell viability between the new homozygous yeasts and the original heterozygous hybrid cells. The concomitant loss of ScV-M2 virus in the LOH process may increase cell viability of cyh2(R)/cyh2(R) yeasts and so favour asymmetrical evolution. The presence of active killer K2 toxin, however, abolishes the asymmetrical evolution of the hybrid populations. This phenomenon may cause important sudden phenotype changes in industrial and pathogenic yeasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号