首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   34篇
化学工业   82篇
金属工艺   1篇
建筑科学   7篇
能源动力   1篇
轻工业   57篇
无线电   20篇
一般工业技术   49篇
冶金工业   7篇
自动化技术   14篇
  2023年   4篇
  2022年   20篇
  2021年   23篇
  2020年   7篇
  2019年   2篇
  2018年   17篇
  2017年   6篇
  2016年   18篇
  2015年   7篇
  2014年   14篇
  2013年   9篇
  2012年   15篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
41.
We use solvent additives as a simple method to tune the photovoltaic performance of poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojuncton solar cells. 1,2-dichlorobenzene (oDCB) was used as the reference solvent; chlorobenzene (CB) and 1,2,3,4-tetrahydronaphthalene (THN) were used as additives to influence film formation. An increase in the short circuit current and the power conversion efficiency of solar cells with blends cast from mixed solvents was observed. Blends prepared with THN, the highest boiling point solvent, resulted in the best device performance, while blends prepared with the pure reference solvent resulted in the lowest photocurrent. In-plane investigations of the morphology using transmission electron microscopy (TEM) revealed improved phase segregation for blends prepared with mixed solvents, and increased crystallinity in the P3HT phase is demonstrated using atomic force microscopy (AFM) coupled with Kelvin probe force microscopy (KPFM). Optical modeling reveals that the increase in the photocurrent is not due to changes in the optical properties of the blends. Electrical characterization reveals that the electron mobilities decrease slightly in blends cast from mixed solvents, corresponding to a decrease in the fill factor and an increase in P3HT crystallinity observed at the surface of the blend. The increase in the photovoltaic performance is discussed in terms of increased charge separation at the donor-acceptor interface due to increased ordering in the P3HT phase induced by the solvent additives.  相似文献   
42.
43.
Wine is one of the most popular alcoholic beverages in the world, although it is mainly consumed in European and South American countries. Several thousand years have passed since the product of grape fermentation was accidentally discovered. Over the last 100–150 years, winemaking has been completely revolutionized in terms of procedures and equipment. This work is aimed to give a comprehensive overview of the consolidated use of winemaking innovations that are still in the development stage or already applied to commercial products. Their effects on physical, chemical, and sensory characteristics of wines will also be discussed in comparison with the consolidated vinification procedures.  相似文献   
44.
There is an increasing concern that a considerable fraction of engineered nanoparticles (ENs), including quantum dots (QDs), will eventually find their way into the marine environment and have negative impacts on plankton. As ENs enter the ocean, they will encounter extracellular polymeric substances (EPS) from microbial sources before directly interacting with plankton cells. In this study, EPS harvested from four phytoplankton species, Amphora sp., Dunaliella tertiolecta, Phaeocystis globosa, and Thalassiosira pseudonana, were examined for potential interactions with CdSe nonfunctionalized and functionalized (carboxyl- and amine-) QDs in artificial seawater. Our results show that EPS do not reduce the solubility of QDs but rather decrease their stability. The degradation rate of QDs was positively correlated to the protein composition of EPS (defined by the ratio of protein/carbohydrate). Two approaches showed significant inhibition to the degradation of carboxyl-functionalized QDs: (1) the presence of an antioxidant, such as N-acetyl cysteine, and (2) absence of light. Owing to the complexity in evaluating integrated effects of QDs intrinsic properties and the external environmental factors that control the stability of QDs, conclusions must be based on a careful consideration of all these factors when attempting to evaluate the bioavailability of QDs and other ENs in the marine environments.  相似文献   
45.
Antimicrobial packaging can be considered an extremely challenging technology that could have a significant impact on shelf-life extension and food safety of fresh meat and meat products. In this study, different commercial polyethylene films differing in vinyl acetate ethylene, erucamide contents, and oxygen permeability were used for the coating treatment with a nisin-based antimicrobial solution (NS). Detection and measurement of the activity of the NS was determined against different food spoilage bacteria. NS was then spread manually on food contact layer of different plastic films using coating rods providing thickness of 6, 40, 60, and 100 μm. The polyethylene films before and after treatment were analysed by atomic force microscopy (AFM). NS was active against Gram-positive bacteria and the best activity was obtained against Brochothrix thermosphacta. Viable staining and epifluorescence microscopy analysis of indicator strains in contact with activated plastic films showed that the effect of the film on the various indicator strains changed very much on the basis of both type of film and indicator strain. The highest numbers of lysed cells were shown by two polyethylene films that, according to the AFM and roughness parameters analyses, were characterized by significant increase or decrease of roughness after the coating treatment. AFM analysis showed that the homogeneity of the coating was much influenced by the type of plastic films used. In order to test the efficacy in food, portions of beef chuck tender slices were prepared and covered with the antimicrobial plastic films on both sides. After 1 h and 1, 7, and 12 days of storage at 4 °C the meat samples were analyzed by standard plate counting targeting spoilage associated microbial populations. The antimicrobial plastic films after 1 h of contact with the meat caused a significant reduction of lactic acid bacteria and B. thermosphacta. The most effective antimicrobial activity of films was shown against the same populations after 24 h of storage.  相似文献   
46.
The main objective of this work was to obtain microencapsulated probiotic cells in order to improve their resistance to heat stress and gastrointestinal conditions. A further aim was to obtain a potentially probiotic chocolate soufflé. Lactobacillus reuteri DSM 17938 cells were microencapsulated by spray drying in alginate matrix and further coated with chitosan. Bacterial survival after exposure to different heat treatments and simulated gastrointestinal conditions were measured to test the microcapsules. They were also dyed by using a LIVE/DEAD® BacLight? Bacterial Viability Kit and characterized by epifluorescence microscope observation. Furthermore, a potentially chocolate soufflé was prepared using microencapsulated cells. The results indicated that alginate microcapsules did not improve acid tolerance or heat resistance in “in vitro” experiments, while they were able to protect 7% of the Lactobacillus reuteri population during the baking of a chocolate soufflé, compared to a survival rate of 1% of free cells. By contrast, the cells microencapsulated with alginate coated with chitosan showed, compared to free cells, improved acid tolerance, allowing the cell population to remain constant after 3 h in simulated gastric conditions. Moreover, the heat resistance of cells in co-cross-linked microcapsules significantly improved compared to free cells, both in “in vitro” and “in food” experiments. Microencapsulation led to a survival rate of 10% after baking a chocolate soufflé. However, the final level of bacterial cells in the product was too low to consider the chocolate soufflé as a probiotic product.  相似文献   
47.
48.
FRP Confinement of Square Masonry Columns   总被引:4,自引:0,他引:4  
The problem of masonry columns subjected to structural deficiency under axial load was studied and reported in this paper. The results of an extensive experimental campaign are presented in order to show the behavior of columns built with clay or with calcareous blocks, commonly found in southern Italy, especially in historical buildings. Rectangular masonry columns were tested for a total of 33 specimens; uniaxial compression tests were conducted on columns taking into account the influence of several variables: different strengthening schemes (internal and/or external confinement), curvature radius of the corners, amount of fiber-reinforced polymer (FRP) reinforcement, cross-section aspect ratio, and material of masonry blocks. Materials characterization was preliminarily carried out including a mechanical test on plain masonry. For all cases the experimental results evidenced a significant increase in load carrying capacity and ductility after FRP strengthening, which identified the columns as ductile elements despite the brittle nature of the unconfined masonry. Differences in mechanical behavior, due to the geometry of the columns, to the nature of different materials, to different strengthening schemes, and to the amount of reinforcement, are presented and discussed in the paper. The calibration of design equations recently developed by Italian National Research Council, CNR was conducted to compare analytical prediction and experimental results. The same procedure was applied to calibrate an analytical model recently published, in which the existing coefficients are related only to clay. Here the model is applied to limestone for the first time. Thus, new important information is furnished to researchers and practitioners involved in structural assessment and strengthening of compressed elements in historical buildings.  相似文献   
49.
2D Ruddlesden–Popper perovskites are interesting for a variety of applications owing to their tunable optical properties and their excellent ambient stability. As these materials are processable from solution, they hold the promise of procuring flexible and cost‐effective films through large‐scale fabrication techniques. However, such solution‐based deposition techniques often induce large degrees of heterogeneity due to poorly controlled crystallization. The microscopic properties of films of (PEA)2PbI4 cast from precursor solutions of different stoichiometry are therefore investigated. The stoichiometry of the precursor solution is found to have a large impact on the crystallinity, morphology, and optical properties of the resulting thin films. Even for films cast from stoichiometric precursors, differences in photoluminescence intensities occur on a subgranular level. The heterogeneity in these films is found to be thermally activated with an activation energy of 0.4 eV for the emergence of local variations in nonradiative recombination rates. The spatial variation in the distribution of trap states is attributed to local fluctuations in the stoichiometry. In line with this, the surface can successfully be passivated by providing an excess of phenylethylammonium iodide (PEAI) to an as‐cast film, enhancing the photoluminescence by as much as 85% without significantly altering the film's morphology.  相似文献   
50.
The optical properties of the newly developed near‐infrared emitting formamidinium lead triiodide (FAPbI3) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady‐state and time‐resolved photoluminescence. The excitonic emission is dominant in NC ensemble because of the localization of electron–hole pairs. A promisingly high quantum yield above 70%, and a large absorption cross‐section (5.2 × 10?13 cm?2) are measured. At high pump fluence, biexcitonic recombination is observed, featuring a slow recombination lifetime of 0.4 ns. In polycrystalline thin films, the quantum efficiency is limited by nonradiative trap‐assisted recombination that turns to bimolecular at high pump fluences. From the temperature‐dependent photoluminescence (PL) spectra, a phase transition is clearly observed in both NC ensemble and polycrystalline thin film. It is interesting to note that NC ensemble shows PL temperature antiquenching, in contrast to the strong PL quenching displayed by polycrystalline thin films. This difference is explained in terms of thermal activation of trapped carriers at the nanocrystal's surface, as opposed to the exciton thermal dissociation and trap‐mediated recombination, which occur in thin films at higher temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号