Human exposure to external 50/60-Hz electric and magnetic fields induces electric fields within the body. These induced fields can cause interference with implanted pacemakers. In the case of exposure to magnetic fields, the pacemaker leads are subject to induced electromotive forces, with current return paths being provided by the conducting body tissues. Modern computing resources used in conjunction with millimeter-scale human body conductivity models make numerical modeling a viable technique for examining any such interference. In this paper, an existing well-verified scalar-potential finite-difference frequency-domain code is modified to handle thin conducting wires embedded in the body. The effects of each wire can be included numerically by a simple modification to the existing code. Results are computed for two pacemaker lead insertion paths, terminating at either atrial or ventricular electrodes in the heart. Computations are performed for three orthogonal 60-Hz magnetic field orientations. Comparison with simplified estimates from Faraday's law applied directly to extracorporeal loops representing unipolar leads underscores problems associated with this simplified approach. Numerically estimated electromagnetic interference (EMI) levels under the worst case scenarios are about 40 microT for atrial electrodes, and 140 microT for ventricular electrodes. These methods could also be applied to studying EMI with other implanted devices such as cardiac defibrillators. 相似文献
This paper presents ProFlex, a distributed data storage protocol for large-scale Heterogeneous Wireless Sensor Networks (HWSNs) with mobile sinks. ProFlex guarantees robustness in data collection by intelligently managing data replication among selected storage nodes in the network. Contrarily to related protocols in the literature, ProFlex considers the resource constraints of sensor nodes and constructs multiple data replication structures, which are managed by more powerful nodes. Additionally, ProFlex takes advantage of the higher communication range of such powerful nodes and uses the long-range links to improve data distribution by storage nodes. When compared with related protocols, we show through simulation that Proflex has an acceptable performance under message loss scenarios, decreases the overhead of transmitted messages, and decreases the occurrence of the energy hole problem. Moreover, we propose an improvement that allows the protocol to leverage the inherent data correlation and redundancy of wireless sensor networks in order to decrease even further the protocol’s overhead without affecting the quality of the data distribution by storage nodes. 相似文献
A Packing problem consists in the best arrangement of several objects inside a bounded area named as the container. This arrangement must fulfill with technological constraints, for example, objects should not be overlapping. Some packing models for circular objects are typically formulated as non-convex optimization problems; where the continuous variables are the coordinates of the objects, so they are limited to not finding optimal solutions. Due to the combinatorial nature in the arrangement of such objects, heuristic methods are being used extensively which combine methods of global search and methods of local exhaustive search of local minima or their approximations. In this paper, we will address the packing problem for non-congruent (different size) circles with the binary version of the monkey algorithm which incorporates a cooperation process and a greedy strategy. We use a rectangular grid for covering the container. Every node in the grid represent potential positions for a circle. In this sense, binary monkey algorithm for the knapsack problem, can be used to solve de 0–1 approximate packing problem for non-congruet circles. The binary monkey problem uses two additional processes of the original monkey algorithm, these two processes are a greedy process and a cooperation processes.
Complementary thin-film transistor circuits composed of 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS–PEN) and a rylene carboxylic diimide derivative for p- and n-channel thin-film transistors (TFTs) were fabricated on flexible foils. The so-called staggered TFT configuration is used, meaning that the semiconductors layers are deposited last. The work-function of the injecting gold electrodes were modified using several self-assembled monolayers (SAMs). For optimized contacts the mobility of the n- and p-channel TFTs was 0.5 cm2/Vs and 0.2 cm2/Vs, respectively. Strongly degraded performance is obtained when the n-channel material was printed on contacts optimized for the p-channel TFT, and vice versa. This illustrates that for CMOS circuits we need careful work-function engineering to allow proper injection for both electrons and holes. We show for the first time that by using a bimolecular mixture for the SAM we can systematically vary the work function, and demonstrate how this affects the performance of discrete n-type and p-type transistors, as well as CMOS inverters and ring oscillators. Under optimal processing conditions we realized complementary 19-stage ring oscillators with 10 μs stage delay operating at 20 V. 相似文献
This paper introduces a multisensor architecture to fuse data acquired from different sensors available in commodity smartphones in order to build accurate location-based services, and pursuing a good balance between accuracy and performance. Using scale invariant features from the images captured using the smartphone camera, we perform a matching process against previously obtained images to determine the current location of the device. Several refinements are introduced to improve the performance and the scalability of our proposal. Location fingerprinting, based on IEEE 802.11, will be used to determine a cluster of physical points, or zone, where the device seems to be according to the received signal strength. In this way, we will reduce the number of images to analyze to those contained in the tentative zone. Additionally, accelerometers will also be considered in order to improve the system performance, by means of a motion estimator. This set of techniques enables a wide range of location-based applications. 相似文献
In this paper, a comparative analysis of the performance of the nonsynchronized initial random access channel in Mobile WiMAX and E-UTRA systems under different conditions (fast fading, multiuser interference) is carried out. The analysis is focused on the correlation properties of the code sequences used in each case. We evaluate their ability to provide low values for false alarm and erroneous detection probabilities (detecting a sequence that has not been transmitted) at the same time as guaranteeing low nondetection probabilities of the effectively transmitted sequences. Results show the promising performance of the E-UTRA scheme, even in high mobility scenarios, where the Doppler effect requires additional considerations to guarantee the correct system operation. 相似文献
This paper discusses the convenience of using two-dimensional (2-D) coding techniques for the compression of electrocardiogram (ECG) signals. These signals present a very clear periodicity that can be exploited by the use of a 2-D time/frequency transform to decorrelate it as much as possible. A brief theoretical approach is given to justify the use of this technique, and a comparison is made between a 2-D and a one-dimensional (1-D) uniform quantization scenarios. The influence of the error as well as the frame size on the estimation of the fundamental period is studied. 相似文献
This article reports the latest results of an R&D effort to develop a prototype implementation of a dynamic policy-based network management (PBNM) system that can be used to configure and manage a secure network for a coalition environment across an unsecured wide area network. The prototype, based on a distributed architecture, includes capabilities for policy creation and management, dynamic policy negotiation, and dynamic policy provisioning. The policy negotiation facilitates the rapid deployment of a coalition network while the dynamic policy provisioning automates the configuration and management of network services including firewalls, virtual private network connections, routing, quality of service (QoS), and domain name services. Such a PBNM system enhances an organization's ability to react to network incidents identified by a network situational awareness assessment. Although the focus of the current research is a military coalition environment, the system can be used in any distributed enterprise or collaborative environment 相似文献
The emergence of Dirac semimetals has stimulated growing attention, owing to the considerable technological potential arising from their peculiar exotic quantum transport related to their nontrivial topological states. Especially, materials showing type-II Dirac fermions afford novel device functionalities enabled by anisotropic optical and magnetotransport properties. Nevertheless, real technological implementation has remained elusive so far. Definitely, in most Dirac semimetals, the Dirac point lies deep below the Fermi level, limiting technological exploitation. Here, it is shown that kitkaite (NiTeSe) represents an ideal platform for type-II Dirac fermiology based on spin-resolved angle-resolved photoemission spectroscopy and density functional theory. Precisely, the existence of type-II bulk Dirac fermions is discovered in NiTeSe around the Fermi level and the presence of topological surface states with strong (≈50%) spin polarization. By means of surface-science experiments in near-ambient pressure conditions, chemical inertness towards ambient gases (oxygen and water) is also demonstrated. Correspondingly, NiTeSe-based devices without encapsulation afford long-term efficiency, as demonstrated by the direct implementation of a NiTeSe-based microwave receiver with a room-temperature photocurrent of 2.8 µA at 28 GHz and more than two orders of magnitude linear dynamic range. The findings are essential to bringing to fruition type-II Dirac fermions in photonics, spintronics, and optoelectronics. 相似文献
N,N′‐1H,1H‐perfluorobutyl dicyanoperylenecarboxydiimide (PDIF‐CN2), a soluble and air stable n‐type molecule, undergoes significant reorganization upon thermal annealing after solution deposition on several substrates with different surface energies. Interestingly, this system exhibits an exceptional edge‐on orientation regardless of the substrate chemistry. This preferential orientation is rationalized in terms of strong intermolecular interactions between the PDIF‐CN2 molecules. The presence of a pronounced π–π stacking is confirmed by combining near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS), dynamic scanning force microscopy (SFM) and surface energy measurements. The remarkable charge carrier mobility measured in field‐effect transistors, using both bottom‐ and top‐contact (bottom‐gate) configurations, underlines the importance of strong intermolecular interactions for the realization of high performing devices. 相似文献