首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   6篇
  国内免费   1篇
电工技术   1篇
化学工业   38篇
金属工艺   4篇
机械仪表   5篇
建筑科学   2篇
能源动力   7篇
轻工业   13篇
水利工程   1篇
石油天然气   1篇
无线电   40篇
一般工业技术   78篇
冶金工业   3篇
自动化技术   63篇
  2023年   8篇
  2022年   11篇
  2021年   11篇
  2020年   8篇
  2019年   5篇
  2018年   16篇
  2017年   12篇
  2016年   10篇
  2015年   10篇
  2014年   8篇
  2013年   26篇
  2012年   16篇
  2011年   22篇
  2010年   10篇
  2009年   13篇
  2008年   13篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1988年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
41.
In lithium ion batteries (LIBs), the layered cathode materials of composition LiNi1−xyCoxMnyO2 are critical for achieving high energy densities. A high nickel content (>80%) provides an attractive balance between high energy density, long lifetime, and low cost. Consequently, Ni-rich layered oxides cathode active materials (CAMs) are in high demand, and the importance of LiNiO2 (LNO) as limiting case, is hence paramount. However, achieving perfect stoichiometry is a challenge resulting in various structural issues, which successively impact physicochemical properties and result in the capacity fade of LIBs. To better understand defect formation in LNO, the role of the Ni(OH)2 precursor morphology in the synthesis of LNO requires in-depth investigation. By employing aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction, a direct observation of defects in the Ni(OH)2 precursor preparedis reported and the ex situ structural evolution from the precursor to the end product is monitored. During synthesis, the layered Ni(OH)2 structure transforms to partially lithiated (non-layered) NiO and finally to layered LNO. The results suggest that the defects observed in commercially relevant CAMs originate to a large extent from the precursors, hence care must be taken in tuning the co-precipitation parameters to synthesize defect-free Ni-rich layered oxides CAMs.  相似文献   
42.
Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase-brookite mixed phase TiO2 nanoparticles (∼10 nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH3 and H2O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO2 changes the decomposition pathway and thereby the reactivity.  相似文献   
43.
A microscopic theory of interplay between superconductivity and antiferromagnetism in rare-earth nickel boride, HoNi2B2C is developed from first principles. Self-consistent equations for the superconducting order parameter Δ and magnetic order parameter Γ are derived using a Green’s function technique and an equation of motion method. The theory is applied to explain the experimental results in the antiferromagnetic superconductor HoNi2B2C. The present model explains the true coexistence of superconductivity and antiferromagnetism in this system. The behavior of the superconducting order parameter (Δ), the magnetic order parameter (Γ), the specific heat, the density of states, the free energy and critical field (H c) is also studied for the system HoNi2B2C. Distinct features of the coexistence region are discussed. There is the convincing evidence that the theory is fully compatible with the key experiments.  相似文献   
44.
45.
Silver nanowire films are promising alternatives to tin-doped indium oxide (ITO) films as transparent conductive electrodes. In this paper, we report the use of vacuum filtration and a polydimethylsiloxane (PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates, bringing advantages such as the capability of patterned transfer, the best performance among various ITO alternatives (10 Ω/sq at 85% transparency), and good adhesion to the underlying substrate, thus eliminating the previously reported adhesion problem. In addition, our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes, making it a scalable process. Furthermore, use of an anodized aluminum oxide (AAO) membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency. Using this transfer technique, we obtained silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85%, a sheet resistance of 10 Ω/sq, with good mechanical flexibility. Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume.   相似文献   
46.
Key-insulated encryption schemes use a combination of key splitting and key evolution to protect against key exposure. Existing schemes, however scale poorly, having cost proportional to the number t of time periods that may be compromised by the adversary, and thus are practical only for small values of t. Yet in practice t might be large. This paper presents a strongly key-insulated encryption scheme with optimal threshold. In our scheme, t need not be known in advance and can be as large as one less than the total number of periods, yet the cost of the scheme is not impacted. This brings key-insulated encryption closer to practice. Our scheme is based on the Boneh-Franklin identity-based encryption (IBE) scheme [9], and exploits algebraic properties of the latter. Another contribution of this paper is to show that (not strongly) key-insulated encryption with optimal threshold and allowing random-access key updates (which our scheme and all others known allow) is equivalent to a restricted form of IBE. This means that the connection between key-insulated encryption and IBE is not accidental. Supported in part by NSF grants CCR-0098123, ANR-0129617 and CCR-0208842, and by an IBM Faculty Partnership Development Award. Supported in part by an NSF graduate fellowship.  相似文献   
47.
In this article, the authors propose a new framework for understanding and studying heuristics. The authors posit that heuristics primarily serve the purpose of reducing the effort associated with a task. As such, the authors propose that heuristics can be classified according to a small set of effort-reduction principles. The authors use this framework to build upon current models of heuristics, examine existing heuristics in terms of effort-reduction, and outline how current research methods can be used to extend this effort-reduction framework. This framework reduces the redundancy in the field and helps to explicate the domain-general principles underlying heuristics. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
48.
Carrageenan–hyaluronic acid/nanohydroxyapatite/microcrystalline cellulose composite scaffolds with various amounts of microcrystalline cellulose content (from 0 to 60?wt%) were prepared using freeze-drying method. The results showed highly porous (from 94.0?±?1.09 to 85.0?±?1.05%) composite scaffolds with high water-uptake capacity, average pore size ranging 200–650?µm, and improved mechanical properties (in dry and wet states). Additionally, cytocompatibility of composite scaffolds was evaluated by in vitro culture of osteoblast (MC3T3-E1) cells for 1 and 3 days of incubation and demonstrated good cell adhesion, infiltration, and proliferation. Thus, as-obtained composite scaffolds may have promising application in low-loading bone tissue engineering applications.  相似文献   
49.
Polymer blends are important for both commercial utility and scientific understanding. The degree of interfacial mixing in polymer blends is important since it influences the blends' mechanical properties. Understanding bulk properties in multiphase polymeric materials requires knowledge of the interfacial properties of the materials. The characterization of the interface, in terms of its width and composition profile, provides insight about the bulk behaviour of the material. Chemical microscopy through electron energy-loss spectroscopy (EELS) in a transmission electron microscope is gaining popularity to characterize narrow polymer–polymer interfaces. In this work, we show how scanning transmission electron microscopy spectrum imaging, a spatially resolved energy-loss spectroscopy, can be employed to calculate the interfacial width in a pair of immiscible polymers, taking a polycarbonate–polystyrene (PC-PS) bilayer as an example. By mapping peaks unique to each of the blend constituents at several points across the interface, we show how the interfacial profile concentrations can be determined. With this method we calculated the interfacial width in the PC-PS bilayer sample to be approximately 32 nm, even utilizing low resolution spectrometers, which are more widely available. Using the technique described with higher resolution EELS instruments having a better signal-to-noise ratio, a higher spatial resolution can be achieved. Using EELS chemical fingerprints of polymers that have been developed earlier, the technique presented here has the potential for effective visualization and morphological measurements of phase-differentiated polymer blends. This paper is an attempt to enable a new user to characterize polymer–polymer interfaces using chemical microscopy. © 2022 Society of Industrial Chemistry.  相似文献   
50.
The Ni1+xTixFe2−2xO4 (0 ≤ x ≤ 0.1) ferrite systems prepared by a semi-chemical route, have been studied by electron paramagnetic resonance (EPR) at X-band, Mössbauer spectroscopy and magnetization measurements at various temperatures. EPR spectra of these samples comprise generally a broad and asymmetric EPR signal. The variation of geff and peak-to-peak line width ΔHpp, with Ti concentration and temperature are attributed to the variation of dipole–dipole interaction and the superexchange interaction. Mössbauer spectra comprise two sets of sextet attributed to Fe3+ at two distinct sites-A and -B. Ti4+ ions are concluded to occupy the octahedral B-sites. Magnetic moment is found to decrease with the increase of Ti4+ concentration. The effective magnetic field Heff at the A-sites also follows a similar trend. The reason is attributed to the canted structure of spins in the Ti-doped samples. An anomalous behavior at x = 0.015 is observed in the properties studied here and some sort of phase change is believed to occur at 473 K in these ferrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号