首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   10篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   45篇
金属工艺   3篇
机械仪表   7篇
建筑科学   6篇
能源动力   13篇
轻工业   27篇
水利工程   2篇
无线电   25篇
一般工业技术   45篇
冶金工业   9篇
原子能技术   1篇
自动化技术   68篇
  2023年   6篇
  2022年   9篇
  2021年   17篇
  2020年   7篇
  2019年   4篇
  2018年   14篇
  2017年   14篇
  2016年   8篇
  2015年   6篇
  2014年   12篇
  2013年   32篇
  2012年   19篇
  2011年   16篇
  2010年   14篇
  2009年   8篇
  2008年   14篇
  2007年   8篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   4篇
  1989年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   5篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
101.
The problem of path planning deals with the computation of an optimal path of the robot, from source to destination, such that it does not collide with any obstacle on its path. In this article we solve the problem of path planning separately in two hierarchies. The coarser hierarchy finds the path in a static environment consisting of the entire robotic map. The resolution of the map is reduced for computational speedup. The finer hierarchy takes a section of the map and computes the path for both static and dynamic environments. Both the hierarchies make use of an evolutionary algorithm for planning. Both these hierarchies optimize as the robot travels in the map. The static environment path is increasingly optimized along with generations. Hence, an extra setup cost is not required like other evolutionary approaches. The finer hierarchy makes the robot easily escape from the moving obstacle, almost following the path shown by the coarser hierarchy. This hierarchy extrapolates the movements of the various objects by assuming them to be moving with same speed and direction. Experimentation was done in a variety of scenarios with static and mobile obstacles. In all cases the robot could optimally reach the goal. Further, the robot was able to escape from the sudden occurrence of obstacles.  相似文献   
102.
Glancing angle deposition (GLAD) was employed to synthesise plasmonic Silver (Ag) nanoparticles (NPs) on the chemically prepared Erbium-doped Titanium dioxide (Er:TiO2) thin films (TFs). The impact of using Ag NPs on the morphological, optical, and electrical aspects of Er:TiO2 TFs were sequentially analysed. From the field emission scanning electron microscopy (FESEM) image, the Ag NPs appeared spherical and uniformly distributed on the Er:TiO2 TFs. The size (diameter) of the maximum number of Ag NPs was ~15 nm (calculated from FESEM image). Energy dispersive X-ray (EDX) spectra assured the presence of Ag NPs on the TFs. X-ray diffraction (XRD) pattern for Ag NPs decorated Er:TiO2 TFs closely resembled the face centred cubic crystal structure of Ag NPs and body centred tetragonal Ag–O compound. The optical spectroscopy (UV–visible diffuse reflectance and photoluminescence) elucidated that the absorption of light was significantly enhanced in the UV–visible spectral range for the TFs in which Ag NPs were sandwiched between Er:TiO2 TF layers (Er:TiO2/Ag NPs/Er:TiO2). The Schottky contact-based Au/Er:TiO2/Si photodetector (PD) and Au/Er:TiO2/Ag NPs/Er:TiO2/Si (plasmonic) PD were constructed. The plasmonic PD offered a better photo-responsivity of ~4.5 fold higher as compared to Er:TiO2 TF-based PD upon 380 nm illumination under ?6 V bias. An increase in detectivity and a decrease in noise equivalent power was observed for the plasmonic device compared to Er:TiO2 device in the UV region. A theoretical approach had been adopted to calculate the wavelength-dependent responsivity for both devices. Further, the important parameters like photoconductive gain, electron transit time and electron mobility were calculated by simulating the experimental responsivity curves of the devices. These parameters exhibited improvement in the UV regime for the plasmonic PD. The fast temporal response with short rise and decay time proves the excellent efficiency of the plasmonic UV PD.  相似文献   
103.
Telecommunication Systems - Phishing websites are amongst the biggest threats Internet users face today, and existing methods like blacklisting, using SSL certificates, etc. often fail to keep up...  相似文献   
104.
Growth of Ag nanoislands on air-oxidized Si(001), (111) and (110) surfaces has been investigated by reflection high energy electron diffraction (RHEED), scanning tunneling microscopy (STM) and cross-sectional transmission electron microscopy. We have shown that the oriented nanocrystalline Ag, similar to the epitaxial growth of Ag on clean Si surfaces, can be grown on oxide-covered Si surfaces. A thin oxide layer (~ 2-3 nm thick) is formed on ultra-high vacuum (UHV)-cleaned Si surfaces via exposure of the clean reconstructed surface to air. Deposition of Ag was carried out under UHV at different substrate temperatures and monitored by RHEED. RHEED results reveal that Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while, in spite of the presence of the oxide layer between Ag islands and Si, preferred orientations with an epitaxial relationship with the substrate evolve when Ag is deposited at higher substrate temperatures. STM images of the oxidized surfaces, prior to Ag deposition, apparently do not show any order. However, Fourier transforms of STM images show the presence of a short range order on the oxidized surface following the unit cells of the underlying reconstructed Si surface. It is intriguing that Ag nanoislands follow an epitaxial orientational relationship with the substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently, the short range order existing on the oxide surface influences the orientation of the Ag nanoislands.  相似文献   
105.
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.  相似文献   
106.
Zinc oxide (ZnO) nanoparticles have been synthesized by wet chemical processing from four different zinc precursor materials at room temperature. Synthesis of phase pure material with four different morphologies and orientations have been confirmed through different characterization techniques like, X-ray diffraction, field emission SEM, fourier transformed IR etc. The band gap energies of the synthesized materials were within specific semiconductor limits and the same have been determined from UV–Visible and photoluminescence spectra of the synthesized nanostructured ZnO materials. Thus it is possible to control ZnO nanostructures and morphologies through facile room temperature synthesis and tailor their band gaps for different application purposes.  相似文献   
107.
2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large‐area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution‐based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum‐based synthesis because it is relatively simple and easy to scale up for high‐throughput production. In addition, solution‐based thin films open new opportunities that cannot be achieved from vacuum‐based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution‐based synthesis of 2D metal chalcogenides are discussed.  相似文献   
108.
109.
Integration of semiconductor epitaxical nanostructures and nanocrystals into two classes of quantum structures, uncovered adsorbed nanocrystals or buried via epitaxical overgrowth, is successfully demonstrated through structural and optical studies. The combination InGaAs/GaAs epitaxical structures and InAs nanocrystals is employed as a vehicle with the functional aim of exploiting the well developed optoelectronic communication technology based on the former with the biochemical and biomedical applications for which the latter are well suited.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号