首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   39篇
  国内免费   6篇
电工技术   11篇
化学工业   177篇
金属工艺   32篇
机械仪表   31篇
建筑科学   4篇
矿业工程   3篇
能源动力   60篇
轻工业   38篇
水利工程   5篇
石油天然气   4篇
无线电   72篇
一般工业技术   167篇
冶金工业   69篇
自动化技术   72篇
  2024年   4篇
  2023年   15篇
  2022年   30篇
  2021年   46篇
  2020年   40篇
  2019年   25篇
  2018年   35篇
  2017年   42篇
  2016年   30篇
  2015年   23篇
  2014年   52篇
  2013年   64篇
  2012年   38篇
  2011年   39篇
  2010年   47篇
  2009年   26篇
  2008年   35篇
  2007年   25篇
  2006年   20篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1983年   1篇
排序方式: 共有745条查询结果,搜索用时 15 毫秒
121.
Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.  相似文献   
122.
123.
124.
This article concerns the application of the lattice Boltzmann method (LBM) to solve the energy equation of a combined radiation and non-Fourier conduction heat transfer problem. The finite propagation speed of the thermal wave front is accounted by non-Fourier heat conduction equation. The governing energy equation is solved using the LBM. The finite-volume method (FVM) is used to compute the radiative information. The formulation is validated by taking test cases in 1-D planar absorbing, emitting, and scattering medium whose west boundary experiences a sudden rise in temperature, or, with adiabatic boundaries, the medium is subjected to a sudden localized energy source. Results are analyzed for the various values of parameters like the extinction coefficient, the scattering albedo, the conduction-radiation parameter, etc., on temperature distributions in the medium. Radiation has been found to help in facilitating faster distribution of energy in the medium. Unlike Fourier conduction, wave fronts have been found to reflect from the boundaries. The LBM-FVM combination has been found to provide accurate results.  相似文献   
125.
Load forecasting is a critical issue for operational planning as well as grid expansion to ensure an uninterruptable electric power system. Being a small but densely populated country in South Asia, Bangladesh has many isolated places which are not connected to national grid yet. If concern authority opts to expand grid to those areas, they need reliable demand data for designing and dimensioning of different power system entities, e.g., capacity, overhead line capacity, tie line capacity, spinning reserve, load-shedding scheduling, etc., for reliable operation and to prevent possible obligatory redesigning. This paper represents an analysis to forecast the electricity demand of an isolated island in Bangladesh where past history of electrical load demand is not available. The analysis is based on the identification of factors, e.g., population, literacy rate, per capita income, occupation, communication, etc., on which electrical load growth of an area depends. Data has been collected from the targeted isolated area and form a grid connected area which is similar to target area from social and geographical perspective. Weights of those factors on load have been calculated by matrix inversion. Demand of the new area is forecasted using these weights factors by matrix multiplication.  相似文献   
126.
This work investigates the influence of functionalized multiwall carbon nanotube (MWNT) on microstructure and water vapor transport properties of segmented polyurethane (SPU) membranes. SPUs were reinforced with four different concentration of MWNT viz. 0.25, 0.50, 1.0, and 2.5 wt%. Presence of the microcrystals in all SPU‐MWNT composite membranes was detected by wide angle X‐ray diffraction (WAXD). The percent crystallinity of SPU‐MWNT at 0.25 wt% content of MWNT was increased slightly when compared with the pristine SPU sample. However, further increase of MWNT decreases the order structure. Glass transition temperature was increases with increasing MWNT content in the SPUs, which signifies that MWNT could also affect the amorphous region of SPU. WAXD and transmission electron microscopy (TEM) results evidenced the interaction between SPUs and MWNT. In comparing the water vapor transport properties of MWNT‐SPU composite membranes, it was observed that at 0.25 wt% of MWNT in SPU, water vapor transport property increases slightly at soft segment crystal melting temperature. Further increase of MWNT content has no significant influence on the water vapor transport properties. However, at 2.5 wt% of MWNT in SPU matrix, water vapor transport was decreases due to the increase of stiffness in the polymer chains. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   
127.
Significant physical attributes affecting quality of Indian black (CTC) tea   总被引:1,自引:0,他引:1  
In this research work, an attempt was made to discriminate different grades of black crush-tear-curl (CTC) tea based upon their physical attributes such as color of brewed liquor, texture, size and shape of the tea granules obtained by machine vision technique. The principal component analysis (PCA) was applied over two types of data. First, tea samples with seven different quality grades but same mechanical grading and second, samples with same quality grade but nine different mechanical grades (Brokens, Fannings and Dust) were considered for analysis, respectively. The results of PCA showed that best discrimination (100%) in both types of data was given by color attributes only. Correlations among tea samples and physical attributes were determined. Based upon these results it may be concluded that color only attributes are the most significant and sufficient for quantification of tea quality whereas other physical attributes contribute so little to quality estimation that they may be ignored.  相似文献   
128.
The effects of fracture characteristics, specific discharge, and ionic strength on microsphere transport in variable-aperture dolomite rock fractures were studied in a laboratory-scale system. Fractures with different aperture distributions and mineral compositions were artificially created in two dolomite rock blocks. Transport tests were conducted with bromide and carboxylate-modified latex microspheres (20, 200, and 500 nm diameter). Under overall unfavorable attachment conditions, there was significant retention of the 20 nm microsphere and minimal retention of the 500 nm microsphere for all conditions examined. Aperture variability produced significant spatial variation in colloid transport. Flushing with low ionic strength solution (1 mM) following microsphere transport at 12 mM ionic strength solution produced a spike in effluent microsphere concentrations, consistent with retention of colloids in secondary energy minima. Surface roughness and charge heterogeneity effects may have also contributed to the effect of microsphere size on retention. Matrix diffusion influenced bromide transport but was not a dominant factor in transport for any microsphere size. Calibrated one-dimensional, two-site kinetic model parameters for colloid transport in fractured dolomite were sensitive to the physical and chemical properties of both the fractured dolomite and the colloids, indicating the need for mechanistic modeling for accurate prediction.  相似文献   
129.
Two novel bipolar host materials (CBzIm and COxaPh) comprising of a hole-transport (HT) carbazole core functionalized with electron-transport (ET) moieties (benzimidazole/oxadiazole) at C3 and C6 positions have been synthesized. Their thermal, photophysical, electrochemical properties, and carrier mobilities were characterized. Theoretical calculations revealed that the HOMO orbitals were generally delocalized over the hole- and electron-transport moieties for both CBzIm and COxaPh, whereas the LUMO orbitals distribution only involved one benzimidazole moiety in CBzIm instead of fully delocalization over the whole polar moieties for COxaPh, which is consistent with the observation of good hole mobilities for both hosts and better electron mobility for COxaPh over CBzIm. CBzIm with high ET (2.76 eV) is suitable to serve as a blue phosphor host, where a sky blue phosphor (DFPPM)2Irpic exhibiting superior properties than those of popular blue emitter FIrpic was used to give highly efficient phosphorescent OLEDs, achieving a maximum external quantum efficiency (ηext) of 15.7%. The better π-delocalization of COxaPh led to a lower triplet energy (ET = 2.65 eV), which can be used to accommodate green and red phosphors, providing excellent device performance with ηext as high as 17.7% for green [(ppy)2Ir(acac)] and 20.6% for red [Os(bpftz)2(PPh2Me)2], respectively.  相似文献   
130.
Low‐moisture foods have been responsible for a number of salmonellosis outbreaks worldwide over the last few decades, with cross contamination from contaminated equipment being the most predominant source. To date, actions have been focused on stringent hygienic practices prior to production, namely periodical sanitization of the processing equipment and lines. Not only does optimum sanitization require in‐depth knowledge on the type and source of contaminants, but also the heat resistance of microorganisms is unique and often dependent on the heat transfer characteristics of the low‐moisture foods. Rheological properties, including viscosity, degree of turbulence, and flow characteristics (for example, Newtonian or non‐Newtonian) of both liquid and semisolid foods are critical factors impacting the flow behavior that consequently interferes heat transfer and related control elements. The demand for progressively more accurate prediction of complex fluid phenomena has called for the employment of computational fluid dynamics (CFD) to model mass and heat transfer during processing of various food products, ranging from drying to baking. With the aim of improving the quality and safety of low‐moisture foods, this article critically reviewed the published literature concerning microbial survival in semisolid low‐moisture foods, including chocolate, honey, and peanut butter. Critical rheological properties and state‐of‐the‐art CFD application relevant to quality production of those products were also addressed. It is anticipated that adequate prediction of specific transport properties during optimum sanitization through CFD could be used to solve current and future food safety challenges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号