首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   18篇
  国内免费   7篇
电工技术   13篇
综合类   5篇
化学工业   126篇
金属工艺   29篇
机械仪表   16篇
建筑科学   36篇
能源动力   23篇
轻工业   45篇
水利工程   12篇
石油天然气   8篇
武器工业   2篇
无线电   58篇
一般工业技术   108篇
冶金工业   36篇
原子能技术   1篇
自动化技术   94篇
  2024年   8篇
  2023年   16篇
  2022年   20篇
  2021年   41篇
  2020年   32篇
  2019年   30篇
  2018年   49篇
  2017年   46篇
  2016年   56篇
  2015年   27篇
  2014年   40篇
  2013年   49篇
  2012年   41篇
  2011年   44篇
  2010年   28篇
  2009年   18篇
  2008年   20篇
  2007年   14篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1989年   1篇
  1985年   4篇
  1982年   1篇
排序方式: 共有612条查询结果,搜索用时 15 毫秒
61.
Organic semiconductor to metal Schottky contacts have been widely used in electronic devices and to investigate the properties of organic semiconductors. In designing and characterizing these devices the full depletion approximation is used. The analytical and numerical simulations presented in this paper suggest that this approximation is not generally valid. Simulations of a Schottky contact between regioregular-poly 3 hexylthiophene (rr-P3HT) and aluminum show that this approximation becomes worse as molecular order decreases, with the potential profile increasingly deviating from the expected quadratic function of position. Also the depletion width decreasing well below that predicted using the approximation. In this work the slope of the band tail is used as a measure of disorder.  相似文献   
62.
From the birth of multi-spectral imaging techniques, there has been a tendency to consider and process this new type of data as a set of parallel gray-scale images, instead of an ensemble of an n-D realization. However, it has been proved that using vector-based tools leads to a more appropriate understanding of color images and thus more efficient algorithms for processing them. Such tools are able to take into consideration the high correlation of the color components and thus to successfully carry out energy compaction. In this paper, a novel method is proposed to utilize the principal component analysis in the neighborhoods of an image in order to extract the corresponding eigenimages. These eigenimages exhibit high levels of energy compaction and thus are appropriate for such operations as compression and watermarking. Subsequently, two such methods are proposed in this paper and their comparison with available approaches is presented.  相似文献   
63.
BACKGROUND: An experiment was carried out to establish whether using a pre‐compacting device (expander) changes the contribution of dry matter (DM) and degradative behaviour of peas, lupins and faba beans over the different fractions (non‐washable fraction, NWF; insoluble washable fraction, ISWF; soluble washable fraction, SWF). Samples of the entire concentrate ingredients (WHO ingredients) and their different fractions (NWF, ISWF and SWF) were subjected to three processes (Retsch milling, R; expander treatment, E; expander‐pelleting, EP) and their fermentation characteristics were evaluated using an in vitro gas production technique. RESULTS: In peas and faba beans, both the E and EP processes increased the size of the NWF (P < 0.05) and decreased the size of the SWF compared with the R process. The maximum fractional rate of gas production in the first phase of fermentation was higher in the E and EP samples than in the R samples (P < 0.05). In lupins and faba beans the E and EP processes shifted the pattern of fermentation towards a more glucogenic fermentation, as represented by a lower non‐glucogenic to glucogenic ratio (NGR). Ammonia production (NH3‐N) in the E and EP samples was significantly (P < 0.05) lower than that in the R samples. CONCLUSION: It is concluded that the E and EP processes provide a certain level of protection against ruminal breakdown to dietary protein and shift the pattern of fermentation towards a more glucogenic fermentation. Copyright © 2008 Society of Chemical Industry  相似文献   
64.
The main objective of the present work is to modify the traditional mapping method for the simulation of distributive mixing of multiphase flows in geometries involving moving parts such as, internal mixers or twin-screw extruders without a limitation on their geometrical periodicity. The periodicity condition, limits the results of traditional mapping method to tracking mapping mesh between specific discrete time intervals or distances for that geometry is repeated, hence, result is only for fixed orientation of rotors. Imaginary domain method is introduced to track mapping mesh from one state to the next free of geometrical periodicity limitations. In this work the method is introduced and its applicability and accuracy is discussed in details. A two-dimensional (2D) simulation of mixing of two Newtonian fluids with different viscosities in an intermeshing internal mixer is used as a test case study. In this example the key issues of ability to predict mixing state in details for all orientations of rotors is presented. To reduce diffusion errors of mapping method in the boundaries of the rotors, mapping mesh refinement technique that relies upon one single reference mesh is also presented.  相似文献   
65.
Objective: The objective of this study was to fabricate double-walled poly(lactide-co-glycolide) (PLGA) microspheres to increase encapsulation efficiency and avoid rapid release of hydrophilic drugs such as meglumine antimoniate.

Methods: In this study, double-walled and one-layered microspheres of PLGA were prepared using the emulsion solvent evaporation technique to better control the release of a hydrophilic drug, meglumine antimoniate (Glucantime®), which is the first choice treatment of cutaneous leishmaniasis. The effect of hydrophobic coating on microspheres' size, morphology, encapsulation efficiency and drug release characteristics was evaluated. Furthermore, the presence of antimony in meglumine antimoniate made it possible to observe the drug distribution within the microspheres' cross section by means of energy dispersive X-ray spectroscopy.

Results: Drug distribution images confirmed accumulation of the drug within the inner core of double-walled microspheres. In addition, these microspheres encapsulated the drug more efficiently up to 87% and demonstrated reduced initial burst and prolonged release compared to one-layered microspheres. These superiorities make double-walled microspheres an optimum candidate for sustained delivery of hydrophilic drugs.

Conclusion: Double-walled microspheres provide some advantages over traditional microspheres overcoming most of their limitations. Double-walled microspheres were found to be more efficient than their corresponding one-layered microspheres in terms of encapsulation efficiencies and release characteristics.  相似文献   

66.
Empirical, quantum mechanical and artificial neural network methods are three usual methods in recent years that were used to predict sensitivity of different classes of high explosives. Some recent developments in predicting sensitivity by various methods are reviewed and discussed for various classes of energetic materials.  相似文献   
67.
    
Metal foams are one of the unique materials that need more attention in terms of mechanical and microstructural characterizations. Herein, different kinds of metal foams such as Ni, Cu, and a novel type of multilayered metal foam with Ni–Cu and Cu–Ni coating layer orders are produced and characterized in terms of mechanical response and microstructure of these novel materials during a uniaxial compression test. These multilayered metallic foams have a strong mechanical adhesion at the interface due to the nature of electroforming process and the effect of solid-solution area at these interfaces. Besides, multilayered metal foams are superior to Ni and Cu pure metal foams in terms of mechanical response; applying a multilayered metallic coat with 60 and 69 μm diameter for Ni and Cu improves the yield point of the Ni and Cu single-layer metallic foams by 3 and 7 times, respectively. Moreover, in terms of energy absorption density, the multilayered metallic shell improves the energy absorption density by 3 and 5.5 times compared to Ni and Cu metal foams, respectively. This study shows that applying multi layered coatings to metal foams with Ni as the first layer has superior characteristics compared to single-layer metal foams.  相似文献   
68.
    
Nanoscale organization of transmembrane receptors is critical for cellular functions, enabled by the nanoscale engineering of bioligand presentation. Previously, a spatial threshold of ≤60 nm for integrin binding ligands in cell–matrix adhesion is demonstrated using monoliganded gold nanoparticles. However, the ligand geometric arrangement is limited to hexagonal arrays of monoligands, while plasmonic quenching limits further investigation by fluorescence-based high-resolution imaging. Here, these limitations are overcome with dielectric TiO2 nanopatterns, eliminating fluorescence quenching, thus enabling super-resolution fluorescence microscopy on nanopatterns. By dual-color super-resolution imaging, high precision and consistency among nanopatterns, bioligands, and integrin nanoclusters are observed, validating the high quality and integrity of both nanopattern functionalization and passivation. By screening TiO2 nanodiscs with various diameters, an increase in fibroblast cell adhesion, spreading area, and Yes-associated protein (YAP) nuclear localization on 100 nm diameter compared with smaller diameters was observed. Focal adhesion kinase is identified as the regulatory signal. These findings explore the optimal ligand presentation when the minimal requirements are sufficiently fulfilled in the heterogenous extracellular matrix network of isolated binding regions with abundant ligands. Integration of high-fidelity nano-biopatterning with super-resolution imaging allows precise quantitative studies to address early signaling events in response to receptor clustering and their nanoscale organization.  相似文献   
69.
    
In this study, the mechanical properties of the composite plate were considered Gaussian random fields and their effects on the buckling load and corresponding mode shapes were studied by developing a semi-analytical non-intrusive approach. The random fields were decomposed by the Karhunen−Loève method. The strains were defined based on the assumptions of the first-order and higher-order shear-deformation theories. Stochastic equations of motion were extracted using Euler–Lagrange equations. The probabilistic response space was obtained by employing the non-intrusive polynomial chaos method. Finally, the effect of spatially varying stochastic properties on the critical load of the plate and the irregularity of buckling mode shapes and their sequences were studied for the first time. Our findings showed that different shear deformation plate theories could significantly influence the reliability of thicker plates under compressive loading. It is suggested that a linear relationship exists between the mechanical properties’ variation coefficient and critical loads’ variation coefficient. Also, in modeling the plate properties as random fields, a significant stochastic irregularity is obtained in buckling mode shapes, which is crucial in practical applications.  相似文献   
70.
    
Natural herbs are now receiving more attention due to the growing demand for their antioxidant properties. This study compared flaxseed and fennel seeds for their nutritional composition, bioactive moieties, and antioxidant activity—the study comprised two different phases. According to methods, phase I analyzed flaxseed and fennel seeds for proximate composition, mineral profile, dietary fiber, and amino acid content. In phase II, seeds were extracted using three different solvents, i.e., ethanol 80%, acetone 80%, and distilled water, to probe the total phenolic and flavonoid content. Antioxidant activity was measured using DPPH and a FRAP in the final phase. Current study revealed that flaxseed had higher protein (17.33 ± 0.02%), fat content (36.76 ± 0.02%), potassium (763.66 ± 4.04 mg/100 g), iron (5.13 ± 0.03 mg/100 g), phosphorus (581.46 ± 4.07 mg/100 g), magnesium (406.60 ± 5.12 mg/100 g), and zinc (3.30 ± 0.49 mg/100 g), respectively. In fennel seed, high dietary fiber (53.2 ± 0.01 g/100 mg), calcium, manganese, and sodium (588.93 ± 7.77, 20.30 ± 0.95, and 57.34 ± 0.33 mg/100 g, respectively) were found. Acetone showed better extraction efficiency than acetone, ethanol, and distilled water. Moreover, acetone flaxseed extract showed higher total phenolic content (84.13 ± 7.73 mgGAE/g), flavonoid content (5.11 ± 1.50 mgQE/g), and FRAP (5031 ± 15.92 μMFe2+/g) than fennel seed extract. This study showed that, among both herbs, flaxseed extract may have pharmacological potential in preventing illnesses and may be suggested for use in the food industry as a natural antioxidant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号