全文获取类型
收费全文 | 691篇 |
免费 | 39篇 |
国内免费 | 4篇 |
专业分类
电工技术 | 10篇 |
综合类 | 3篇 |
化学工业 | 160篇 |
金属工艺 | 31篇 |
机械仪表 | 41篇 |
建筑科学 | 26篇 |
能源动力 | 40篇 |
轻工业 | 66篇 |
水利工程 | 9篇 |
石油天然气 | 16篇 |
无线电 | 65篇 |
一般工业技术 | 142篇 |
冶金工业 | 41篇 |
原子能技术 | 8篇 |
自动化技术 | 76篇 |
出版年
2023年 | 8篇 |
2022年 | 20篇 |
2021年 | 39篇 |
2020年 | 28篇 |
2019年 | 40篇 |
2018年 | 43篇 |
2017年 | 48篇 |
2016年 | 33篇 |
2015年 | 35篇 |
2014年 | 36篇 |
2013年 | 72篇 |
2012年 | 45篇 |
2011年 | 47篇 |
2010年 | 38篇 |
2009年 | 40篇 |
2008年 | 33篇 |
2007年 | 22篇 |
2006年 | 12篇 |
2005年 | 10篇 |
2004年 | 5篇 |
2003年 | 9篇 |
2002年 | 6篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 11篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1990年 | 6篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有734条查询结果,搜索用时 15 毫秒
21.
Arman Bonakdarpour George D. Vernstrom Alison K. Schmoeckel Jeff R. Dahn 《Electrochimica acta》2007,53(2):688-694
We report on extensive measurements of oxygen reduction activity of Pt and Pt-Co-Mn electrocatalysts using the rotating ring-disk electrode (RRDE) method. The electrocatalysts were prepared by sputtering from Pt or Pt, Co and Mn targets onto 3M's nano-structured thin film support (NSTF) structures. The area specific activity of Pt/NSTF, measured in 0.1 M HClO4 and at room temperature, is similar to that of bulk Pt. The area specific measurements show a 20 mV reduction in the Pt-Co-Mn/NSTF overpotential compared to Pt/NSTF. The corresponding kinetic gain in the area specific activity of the ternary alloy is about a factor of two. This ORR enhancement factor observed in the ternary Pt-Co-Mn/NSTF by RRDE measurements is similar to the results obtained in 50 cm2 H2/air fuel cells. 相似文献
22.
Synergistic reinforcement of NBR by hybrid filler system including organoclay and nano‐CaCO3 下载免费PDF全文
Rubber nanocomposites containing one type of nanofiller are common and are widely established in the research field. In this study, nitrile rubber (NBR) based ternary nanocomposites containing modified silicate (Cloisite 30B) and also nano‐calcium carbonate (nano‐CaCO3) were prepared using a laboratory internal mixer (simple melt mixing). Effects of the hybrid filler system (filler phase have two kind of fillers) on the cure rheometry, morphology, swelling, and mechanical and dynamic–mechanical properties of the NBR were investigated. Concentration of nano‐CaCO3 [0, 5, 10, and 15 parts per one hundred parts of rubber by weight (phr)] and organoclay (0, 3, and 6 phr) in NBR was varied. The microstructure and homogeneity of the compounds were confirmed by studying the dispersion of nanoparticles in NBR via X‐ray diffraction and field emission scanning electron microscopy. Based on the results of morphology and mechanical properties, the dual‐filler phase nanocomposites (hybrid nanocomposite) have higher performance in comparison with single‐filler phase nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42744. 相似文献
23.
Four single‐site metallocene catalyst based polyethylenes (mPEs), one ultra low density polyethylene, one conventional linear low density polyethylene (LLDPE), and one low density polyethylene (LDPE) were selected to characterize the effect of side chain branches on physical and mechanical properties. Rheological experiments were carried out to extract complex viscosity and elasticity as a function of frequency. Elongational viscosity tests were also performed to assess long chain branching. For some mPEs, sparse long chain branching improved shear thinning and elasticity of the chains in melt state. During elongation, mPEs with a narrow linear chain distribution showed initially greater melt strength whereas for longer elongation, the mPEs with long chain branching lead over in strength. Cast films were produced from the mPEs and their physical (such as crystallinity, crystal size) and mechanical properties were tested. A double melting peak was observed in the differential scanning calorimetry thermograms of the mPE films. A relatively sharp strain hardening behavior in tensile tests was observed for the mPEs films when compared to LLDPE. Fourier transform infrared was used as an effective and fast method to investigate side chain length. It was found that the positioning of side chain, co‐monomer length, and content influence the melting behavior of mPE films. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers 相似文献
24.
Arif Karademir Cem Aydemir Semiha Yenidogan Emine Arman Kandırmaz Rukiye G. Kıter 《Color research and application》2020,45(6):1170-1178
Alkyd resins are generally used in the production of printing inks. All industries look for alternative raw materials in the production of ink with the growing inclination toward using natural products. Resins forming the vehicle of the ink to be obtained from natural resources will provide benefits for the environment, nature, and living creatures. The aim of the study was to promote the use of natural resin in the ink system. Natural Pinus pinaster resin was added into vegetable and mineral oil-based solvents in pure form with alkyd resin in different amounts and ink varnishes of different combinations were prepared. Then, printing inks were produced from these varnishes in pure and hybrid form. Following the assessment of the rheological properties of the inks prepared, printing tests were conducted to assess the printing quality parameters. Ideal mixing ratios of the natural resins in the ink were determined for printability. The environmental importance and advantages of the use of natural resins were discussed. Recommendations were given in line with the results to encourage widespread use of natural resins in near future. 相似文献
25.
Samira Chamyani Alireza Salehirad Nasrin Oroujzadeh Davod Sadeghi Fateh 《Ceramics International》2018,44(7):7754-7760
Due to importance and wide applications, CoCr2O4 ceramic pigment nanoparticles were synthesized via low-temperature solution combustion route by different fuels including ethylenediamine/oxalic acid, ethylenediamine/citric acid, oxalic acid/citric acid and ethylenediamine/oxalic acid/citric acid. Physicochemical properties of the synthesized samples were determined by different techniques such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX) and color/optical properties were evaluated based on CIELAB system by spectrophotometer. Moreover, thermodynamic considerations of combustion reactions for CoCr2O4 nanopigments formation in terms of calculated adiabatic flame temperature and enthalpy of combustion reaction were studied. The Comparison of results and data showed that cobalt chromite pigment nanoparticles synthesized by using ethylenediamine/citric acid and ethylenediamine/oxalic acid/citric acid fuels exhibited higher purity, smaller crystallite size and lower degree agglomeration. 相似文献
26.
Salehi Maryam Zavarian Ali Asghar Arman Ali Hafezi Fatemeh Rad Ghasem Amraee Mardani Mohsen Hamze Kooros Luna Carlos Naderi Sirvan Ahmadpourian Azin 《SILICON》2018,10(6):2743-2749
Silicon - The characterization of ion beam current density distribution and beam uniformity is crucial for improving broad-beam ion source technologies. The design of the broad ion beam extraction... 相似文献
27.
Preparation of a biopolymer chitosan‐polypropylene imine (CS‐PPI) as a biocompatible adsorbent and its reactive textile dyes removal potential were performed. Chemical specifications of CS‐PPI were determined using Fourier transform infrared, 1H‐NMR, and 13C‐NMR. The surface morphology of the CS‐PPI surface was characterized by scanning electron microscopy. Results confirmed that the linkages between the NH2 groups of PPI dendrimer and carboxylic groups of modified Chitosan were accomplished chemically. Two textile reactive dyes, reactive black 5 (RB5) and reactive red 198 (RR198), were used as model compounds. A response surface methodology was applied to estimate the simple and combined effects of the operating variables, including pH, dye concentration, time contact, and temperature. Under the optimal values of process parameters, the dye removal performance of 97 and 99% was achieved for RB5 and RR198, respectively. Furthermore, the isotherm and kinetic models of dyes adsorption were performed. Adsorption data represented that both examined dye followed the Langmuir isotherm. The adsorption kinetics of both reactive dyes were satisfied by pseudo‐second order equation. Based on this study, CS‐PPI due to having high adsorption capacity (6250 mg/g for RB5 and 5882.35 mg/g for RR198), biocompatibility and ecofriendly properties might be a suitable adsorbent for removal of reactive dyes from colored solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
28.
Qusay Alsalhy Amil Merza Khalid Rashid Arman Adam Alberto Figoli Silvia Simone Enrico Drioli 《应用聚合物科学杂志》2013,130(2):989-1004
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013 相似文献
29.
Arman Sadeghi 《American Institute of Chemical Engineers》2016,62(11):4119-4130
A 3D analytical solution is presented for the problem of mass transport in a T‐sensor by taking the axial diffusion effects into account. The solution methodology is based on an eigenfunction expansion of the solute concentration and enjoys the variational calculus for the solution of the associated eigenvalue problem. The method is capable of handling a mixed electroosmotic and pressure‐driven velocity profile and is executed assuming a rectangular channel cross‐section although it can be easily extended to more complex geometries. Two simplified models, one based on a uniform velocity profile, valid for the channel half height to Debye length ratios of above 100, and the other based on a depthwise averaging of the species concentration to be used for cases in which the channel width to height ratio is above 5 are also presented. As a part of the latter, expressions are derived for the Taylor dispersion coefficient of the mixed flow in a slit microconduit. The most interesting finding of this study is that, when the diffusion mechanism significantly contributes to the axial movement of the species, the well‐known heterogeneous mass transport evolves into a nearly uniform pattern in the depthwise direction and the mixing length noticeably increases. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4119–4130, 2016 相似文献
30.
Three Polyvinylidene fluoride (PVDF) different in molecular structure were used to produce nanocomposities films by cast extrusion with a particular emphasis on maximizing the β crystal phase content. The PVDF/clay compounding followed by cast film production was carried out through melt extrusion using a twin screw extruder equipped with a slit die. X‐ray diffraction (XRD) results showed that clay melt intercalation is almost similar for all three PVDFs. The XRD results also revealed that nanocomposite films from PVDF with branched chain structure (PVDFB) generated the greatest amount of β phase. FTIR spectroscopy measurements confirmed the XRD results but also revealed that significant stretching of the melt films at the die or rapid cooling would adversely affect the formation of β phase. The amount of β phase obtained based on nanoclay compounding was compared with that obtained from conventional method: stretching of molded PVDF film with initial α phase. Stretching of PVDF film at 60°C yielded pure β phase that means complete transformation of α to β. From mechanical properties, tensile tests were carried out on PVDF nanocomposite films to evaluate mechanical strength. PVDF with low molecular weight exhibited a very low strain at break while branched PVDF and high molecular weight PVDF could sustain more strain. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers 相似文献