An analytical model of Al0.15Ga0.85N/GaN modulation doped field effect transistor (MODFET), which uses an accurate velocity field relationship and incorporates the dominant effect of piezoelectric polarization induced charge at the AlGaN/GaN interface is presented. The effect of traps has also been taken into account. The calculated DC characteristics are in excellent agreement with the measured data. The model is extended to predict the microwave performance of the device. High current levels (>500 mA/mm), large transconductance (160.83 mS/mm) and a high cutoff frequency (9.6 GHz) have been achieved analytically and are in close agreement with the experimental data. 相似文献
In this paper, we propose a routing algorithm called minimum fusion Steiner tree (MFST) for energy efficient data gathering with aggregation (fusion) in wireless sensor networks. Different from existing schemes, MFST not only optimizes over the data transmission cost, but also incorporates the cost for data fusion, which can be significant for emerging sensor networks with vectorial data and/or security requirements. By employing a randomized algorithm that allows fusion points to be chosen according to the nodes' data amounts, MFST achieves an approximation ratio of 5/4log(k + 1), where k denotes the number of source nodes, to the optimal solution for extremely general system setups, provided that fusion cost and data aggregation are nondecreasing against the total input data. Consequently, in contrast to algorithms that only excel in full or nonaggregation scenarios without considering fusion cost, MFST can thrive in a wide range of applications 相似文献
A grounded lamination gate (GLG) structure for high-/spl kappa/ gate-dielectric MOSFETs is proposed, with grounded metal plates in the spacer oxide region. Two-dimensional device simulations performed on the new structure demonstrate a significant improvement with respect to the threshold voltage roll-off with increasing gate-dielectric constant (due to parasitic internal fringe capacitance), keeping the equivalent oxide thickness same. A simple fabrication procedure for the GLG MOSFET is also presented. 相似文献
AlGaN/GaN high electron mobility transistors (HEMT) on sapphire substrates have been studied for their potential application in RF power applications; however, the low thermal conductivity of the sapphire substrate is a major drawback. Aiming at RF system-in-a-package, the authors propose a flip-chip-integration approach, where the generated heat is dissipated to an AlN carrier substrate. Different flip-chip-bump designs are compared, using thermal simulations, electrical measurements, micro-Raman spectroscopy, and infrared thermography. The authors show that a novel bump design, where bumps are placed directly onto both source and drain ohmic contacts, improves the thermal performance of the HEMT 相似文献
This paper analyzes the effect of temperature variation on various device architectures i.e. Insulated Shallow Extension Silicon On Nothing (ISESON), ISE and SON MOSFET using ATLAS 3D device simulator for 45 nm gate length. The simulation results obtained with the ATLAS has been validated by comparing it with reported experimental data of SON MOSFET. The simulation results demonstrate that out of three device designs, the ISESON MOSFET is the most suitable device for high speed, low voltage and high temperature applications. The integration of ISE and SON onto the conventional bulk MOSFET leads to the enhancement in analog device performance in terms of device efficiency (gm/Ids), device gain (gm/gd), output resistance (Rout) and early voltage (Vea). 相似文献
In recent years, Internet of Things (IoT) devices are used for remote health monitoring. For remotely monitoring a patient, only the health information at different time points are not sufficient; predicted values of biomarkers (for some future time points) are also important. In this article, we propose a powerful statistical model for an efficient dynamic patient monitoring using wireless sensor nodes through Bayesian Learning (BL). We consider the setting where a set of correlated biomarkers are measured from a patient through wireless sensors, but the sensors only report the ordinal outcomes (say, good, fair, high, or very high) to the sink based on some prefixed thresholds. The challenge is to use the ordinal outcomes for monitoring and predicting the health status of the patient under consideration. We propose a linear mixed model where interbiomarker correlations and intrabiomarker dependence are modeled simultaneously. The estimated and the predicted values of the biomarkers are transferred over the internet so that health care providers and the family members of the patient can remotely monitor the patient. Extensive simulation studies are performed to assess practical usefulness of our proposed joint model, and the performance of the proposed joint model is compared to that of some other traditional models used in the literature. 相似文献
Wireless Personal Communications - The orthogonal frequency division multiplexing (OFDM) is the most encouraging multi-carrier modulation system chosen for the high data rates but the objective is... 相似文献
Silicon wafers and dies are made of single crystalline material in semiconductor applications which must withstand high stresses within electronic packages. The apparent mechanical strength of single-crystalline Si depends on process induced defects. Mechanical bending tests are the simplest way to obtain the strength of Si dies and wafers and have been used for many years throughout the industry. Some of the bending tests, such as the 3-point-bend (3PB) test, provide a convoluted contribution from both the defects on die surface (caused by backgrinding and mishandling) and defects on die edges (caused by sawing or dicing). However, the ball-on-ring (BOR) test provides a way to single out the contribution of backside grinding defects to the die strength. This paper compares the results of both 3PB and BOR tests on a number of backgrinding and dicing processes. The die strength of the 3PB test is consistently less than that of the BOR test due to the fact that the edge defects are under tension for 3PB tests but not for BOR. It is demonstrated that the BOR test is a good method for backgrinding process optimization. Due to the intrinsic scattering nature of the strength data, a Weibull-based probabilistic mechanics approach is the method of choice to present the data. 相似文献
Speed control of a DC motor has always been a challenge because of its variable torque. But it becomes more challenging when noise enters the system at its input. Therefore, there is a need of more advanced controllers. In this paper, a multi-resolution proportional integral derivative (MRPID) controller has been proposed to be utilized to control the speed of a DC motor. It works well even in the presence of noise as compared to the conventional PID controller. Also, performance of a PID controller deteriorates when nonlinearity or uncertainty arises in the system. This degraded performance can be improved by utilizing the multi-resolution property of wavelets, which decomposes the error signal into various frequency components. Further, wavelet coefficients of these decompositions are used to generate the control signal for controlling speed of a DC motor. In this paper, performances of a MRPID, a fractional order PID (FOPID) and a conventional PID controllers are compared in the presence of noise for speed control of a DC motor. The results obtained using a MRPID controller are observed to be better in terms of improved transient characteristics and disturbance rejection for a DC motor as compared to those obtained with PID and FOPID controllers.
Wireless Personal Communications - Body area networks (BANs) are evolving tremendously over the years and with the progress in the area of internet of things, the BANs are more important than ever.... 相似文献