Many biological processes are regulated by gradients of bioactive chemicals. Thus, the generation of materials with embedded chemical gradients may be beneficial for understanding biological phenomena and generating tissue‐mimetic constructs. Here a simple and versatile method to rapidly generate materials containing centimeter‐long gradients of chemical properties in a microfluidic channel is described. The formation of a chemical gradient is initiated by a passive‐pump‐induced forward flow and further developed during an evaporation‐induced backward flow. The gradient is spatially controlled by the backward flow time and the hydrogel material containing the gradient is synthesized via photopolymerization. Gradients of a cell‐adhesion ligand, Arg‐Gly‐Asp‐Ser (RGDS), are incorporated in poly(ethylene glycol)‐diacrylate (PEG‐DA) hydrogels to test the response of endothelial cells. The cells attach and spread along the hydrogel material in a manner consistent with the RGDS‐gradient profile. A hydrogel containing a PEG‐DA concentration gradient and constant RGDS concentration is also shown. The morphology of cells cultured on such hydrogel changes from round in the lower PEG‐DA concentration regions to well‐spread in the higher PEG‐DA concentration regions. This approach is expected to be a valuable tool to investigate the cell–material interactions in a simple and high‐throughput manner and to design graded biomimetic materials for tissue engineering applications. 相似文献
This paper develops a generalized system model for the precoded multicarrier communication system, using basic multirate building blocks. Mathematical analysis of the proposed model is carried out, and the results are utilized in developing an efficient uplink wireless communication standard filter bank single carrier frequency division multiple access. The proposed system combines the low peak to average power ratio (PAPR) advantage of a single carrier communication system with the reduced out of band emission (OBE) of filter bank multicarrier (FBMC) scheme. The sensitivity of the proposed system to carrier frequency offset (CFO) is analyzed, and the results are utilized in developing a CFO compensation scheme with reduced complexity. A Nyquist filter design approach, which strikes a balance between OBE and tail size, is developed and is incorporated into the proposed system to enhance the OBE and PAPR characteristics. The instantaneous power of the proposed system is theoretically analyzed using characteristic function based approach, and the effectiveness of modifications is substantiated. A detailed simulation study is carried out to validate the performance of the proposals. 相似文献
This paper proposes a first-order allpass log-domain filter, which is systematically derived using the state-space synthesis procedure. To the best knowledge of the authors, the filter is the first log-domain first-order allpass filter in the literature. The proposed filter has a simple structure and can be electronically tuned. PSPICE simulations are given to confirm the theoretical analysis. 相似文献
The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. The distance between cantilever tip and sample surface in non-contact AFM is a time-varying parameter even for a fixed sample height, and typically difficult to identify. A remedy to this problem is to directly identify the sample height in order to generate high-precision atomic-resolution images. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Since in most practical applications only the microcantilever deflection is accessible, we will use merely this measurement to identify the sample height. In most non-contact AFMs, cantilevers with high-quality factors are employed essentially for acquiring high-resolution images. However, due to high-quality factor, the settling time is relatively large and the required time to achieve a periodic motion is long. As a result, identification methods based on amplitude and phase measurements cannot be efficiently utilized. The proposed method overcomes this shortfall by using a small fraction of the transient motion for parameter identification, so the scanning speed can be increased significantly. Furthermore, for acquiring atomic-scale images of atomically flat samples, the need for feedback loop to achieve setpoint amplitude is basically eliminated. On the other hand, for acquiring atomic-scale images of highly uneven samples, a simple PI controller is designed to track the desired constant sample height. Simulation results are provided to demonstrate the feasibility of the approach for both sample height identification and tracking the desired sample height. 相似文献
This paper addresses the problem of dynamically provisioning both low-speed unicast and multicast connection requests in mesh-based wavelength division multiplexing (WDM) optical networks. Several routing/provisioning schemes to dynamically provision both unicast and multicast connection requests are presented. In addition, a constraint-based grooming strategy is devised to utilize the overall network resources as efficiently as possible. Based on this strategy, several different sequential multicast grooming heuristics are first presented. Then, we devise a hybrid grooming approach and combine it with sequential approaches to achieve a grooming scheme that is biased toward serving multicast traffic demands in comparison with all other sequential grooming approaches. To achieve our objective, we decompose the problem into four subproblems: 1) routing problem; 2) light-tree-based logical-topology-design problem; 3) provisioning problem; and 4) traffic-grooming problem. The simulation results of the proposed schemes are compared with each other and with those of conventional nongrooming approaches. To the best of our knowledge, this is the first detailed paper to address and examine the problem of grooming dynamic multicast traffic demands. 相似文献
Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 μm. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 μW. 相似文献
This paper presents results of using a Coarse Grain Reconfigurable Architecture called DRRA (Dynamically Reconfigurable Resource Array) for FFT implementations varying in order and degree of parallelism using radix-2 decimation in time (DIT). The DRRA fabric is extended with memory architecture to be able to deal with data-sets much larger than what can be accommodated in the register files of DRRA. The proposed implementation scheme is generic in terms of the number of FFT point, the size of memory and the size of register file in DRRA. Two implementations (DRRA-1 and DRRA-2) have been synthesized in 65 nm technology and energy/delay numbers measured with post-layout annotated gate level simulations. The results are compared to other Coarse Grain Reconfigurable Architectures (CGRAs), and dedicated FFT processors for 1024 and 2048 point FFT. For 1024 point FFT, in terms of FFT operations per unit energy, DRRA-1 and DRRA-2 outperforms all CGRA by at least 2× and is worse than ASIC by 3.45×. However, in terms of energy-delay product DRRA-2 outperforms CGRAs by at least 1.66× and dedicated FFT processors by at least 10.9×. For 2048-point FFT, DRRA-1 and DRRA-2 are 10× better for energy efficiency and 94.84 better for energy-delay product. However, radix-2 implementation is worse by 9.64× and 255× in terms of energy efficiency and energy-delay product when compared against a radix-24 implementation.